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Abstract
In this paper, we propose a Cubic Regularized L-BFGS. Cubic Regularized Newton outperform
classical Newton method in terms of global performance. In classics, L-BFGS approximation is
applied for Newton method. We propose a new variant of inexact Cubic Regularized Newton. Then,
we use L-BFGS approximation as an inexact Hessian for Cubic Regularized Newton. It allows us to
get better theoretical convergence rates and good practical performance, especially from the points
where classical Newton is diverging.

1. Introduction

In this paper, we focus on optimization methods that utilize second-order (curvature) information of
objective function. Usually, these methods achieve faster convergence than first-order algorithms.
But at the same time, the per-iteration cost of second-order methods is significantly higher. For
example, a classical Newton method has a quadratic local convergence, but each iteration requires
matrix inversion, which is impractical for large-scale optimization problems. Quasi-Newton meth-
ods [4, 5, 7, 10, 12, 13, 19, 20] were proposed to reduce the high iteration costs of the Newton
method. These methods construct Hessian (inverse) approximations based on first-order (gradient)
information or second-order information along random directions (Hessian vector products) [3].

The Cubic regularized Newton method [17] is another approach to using curvature information
in optimization algorithms. This algorithm achieves a global convergence and allows for Nesterov
acceleration [18]. However, the main drawback of this scheme is an auxiliary subproblem on each
iteration. Thus, usually, it is required to run a separate optimization algorithm to solve the sub-
problem. Cubic Newton algorithm allows for inexact Hessian approximations [11], which makes
it applicable to distributed optimization [2, 8, 21]. Moreover, all the results listed above about the
Cubic Newton method are also generalizable to higher-order (tensor) methods [1, 9, 15, 16]. In
the paper, we propose a Cubic Regularized L-BFGS that uses L-BFGS approximation as an inexact
Hessian for Cubic Regularized Newton. It allows us to get better theoretical convergence rates and
good practical performance, especially from the points where classical Newton is diverging. Sam-
pled and Greedy L-BFGS approximation theoretically outperform gradient descent. Also, under
some special conditions on memory size, we can expect that Cubic L-BFGS will converge with the
same rate as Cubic Regularized Newton.
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2. Problem Statement and Preliminaries

In this paper, we consider the following optimization problem

min
x∈E

f(x), (1)

where E is a finite-dimensional vector space.
Let us introduce some classes of functions f(x) that we are focused on. First, we define star-

convex function and µ-strongly star-convex function. Note, that these functions are non-convex in
general.

Definition 1 Let x∗ be a minimizer of the function f . The function f is star-convex with respect to
x∗ if for all x ∈ E

f (αx+ (1− α)x∗) ≤ αf(x) + (1− α)f(x∗), ∀α ∈ [0, 1]. (2)

Definition 2 Let x∗ be a minimizer of the function f . The function f is µ-strongly star-convex with
respect to x∗ if for all x ∈ E

f (αx+ (1− α)x∗) ≤ αf(x) + (1− α)f(x∗)− α(1− α)µ

2
∥x− x∗∥2, ∀α ∈ [0, 1]. (3)

Note, that convex functions are a subclass of star-convex functions, and mu-strongly convex
functions are a subclass of mu-strongly star-convex functions. Also, star-convex function class is
much bigger than convex functions. For example, all rational p-norms for vectors are star-convex
but not convex, for example ∥x∥1/2. Also, there are some papers that suggest some evidence that
some neural networks are star-convex in large neighbourhoods of its minimizers [14]. To finalise,
we introduce smoothness assumptions for the function f(x).

Definition 3 The continuously-differentiable function f(x) has L1-Lipschitz-continuous gradient if
for any x, y ∈ E

∥∇f(x)−∇f(y)∥∗ ≤ L1∥x− y∥. (4)

Definition 4 The twicly continuously-differentiable function f(x) has L2-Lipschitz-continuous Hes-
sian if for any x, y ∈ E

∥∇2f(x)−∇2f(y)∥ ≤ L2∥x− y∥. (5)

Note, these assumptions are the most standard assumptions for the first and second order methods.

3. Inexact Cubic Regularized Newton

In this section, we introduce an Inexact Cubic Regularized Newton (ICN). This method is a main
upper-level method of our approach. It guarantees fast convergence and control on inexactness of
inner information. This section is mostly inspired by the paper [11] (Section 2) and its general-
ization from the paper [1] (Section 3,4). For this section, we assume that the function f(x) has
L2-Lipschitz-continuous Hessian.

Let us introduce a generalized definition of inexact Hessian.
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Definition 5 A self-adjoint operator Bx : E → E∗ is an (δup, δlow)-inexact Hessian for the function
f(x) at the point x ∈ E if

∇2f(x) ⪯ Bx + δupD (6)

Bx ⪯ ∇2f(x) + δlowD (7)

Note, that in [11] the authors used only (δup, δlow)-inexact Hessian with δup = 0, and in [1] the
authors used only (δup, δlow)-inexact Hessian with δlow = δup = δ.

Now, we can move to the formulation of ICN . Firstly, we introduce exact Taylor approximation.

Φx(y)
def
= f(x) + ⟨∇f(x), y − x⟩+ 1

2

〈
∇2f(x)(y − x), y − x

〉
, (8)

and inexact Taylor approximation

ϕx(y)
def
= f(x) + ⟨∇f(x), y − x⟩+ 1

2 ⟨Bx(y − x), y − x⟩ , (9)

Secondly, let us show that regularized inexact Taylor approximation with (δup, δlow)-inexact Hes-
sian is close to the function f(x) by finding upper and lower bounds.

Lemma 6 For the function f(x) with L2-Lipschitz-continuous Hessian and (δup, δlow)-inexact
Hessian Bx, for any x, y ∈ E we have

f(y)− ϕx(y) ≤
L2

6
∥y − x∥3 + δup

2
(10)

ϕx(y) ≤ f(y) +
L2

6
∥y − x∥3 + δlow

2
(11)

Finally, we introduce the ICN operator

SM,δup(x) = x+ argmin
h∈E

{
f(x) + ⟨∇f(x), h⟩+ 1

2
⟨Bxh, h⟩+

M

6
∥h∥3 + δup

2
∥h∥2

}
, (12)

where M ≥ L2. Then step of the method is

xk+1 = SM,δup(xk). (13)

Now, we present the convergence theorem of ICN for star-convex and µ-strognly star-convex
functions.

Theorem 7 Let f(x) be a star-convex function (Option A) or µ-strongly star-convex function (Op-
tion B) with respect to global minimizer x∗, f(x) has L2-Lipschitz-continuous Hessian, Bxk

is a
(δup, δlow)-inexact Hessian, and M ≥ L2, then the total number of iteration T ≥ 1 of the Inexact
Cubic Regularized Newton to find ε-solution xT such that f(xT )− f(x∗) ≤ ε is bounded by

Option A T = O(1)max

{
(δup + δlow)R

2

ε
;

√
MR3

ε

}
, (14)

Option B T = O(1)max

{
1;

δup + δlow
µ

;

√
MR

µ

}
log

(
f(x0)− f(x∗

ε

)
, (15)

where R = ∥x0 − x∗∥.
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We present the proof in the full version of paper.
To sum up, we propose new ICN under new inexactness assumptions. It opens a new possibil-

ities of choosing approximation Bx and control δup and δlow. Note, if we want we can create such
Bx that δup = 0, then we don’t need to choose this parameter inside the steps of the method. On
the other hand, we can choose Bx such that δlow = 0, then we can control level of the errors by δup
and make an Adaptive ICN that can control δup on desired level. Details on the Adaptive ICN are
available in the full version of paper.

4. Quasi-Newton Approximation

In this section, we propose the approach of creating inexact Hessian by quasi-newton approxima-
tions. The main idea is simple. We calculate Bx as a quasi-newton approximation and make steps
of ICN with such Bx. In this section, we focus on L-BFGS approximation as the most popular one.

To make a step of ICN we need to solve next subproblem:

argmin
h∈E

{
f(x) + ⟨∇f(x), h⟩+ 1

2
⟨Bkh, h⟩+

M

6
∥h∥3 + δup

2
∥h∥2

}
, (16)

where Bx = Bk is L-BFGS approximation. The subproblem’s first derivative with regard to h:

∇f(xk) + (Bk + δupI)h
∗ +

L

2
∥h∗∥h∗ = 0 (17)

Then the solution of the subproblem can be formulated as

h∗ = −
(
Bk + δI +

L

2
∥h∗∥I

)−1

∇f(xk) (18)

Note, that to find h∗ we have to do a ray-search on ∥h∥. It takes O(log(ε−1) inversion. It is
the same as for Cubic Regularized Newton but the main difference that for low-rank L-BFGS ap-
proximation this inversion is much faster to compute. It takes O(d3) computational operation for
the full Hessian, where d is a dimension. For m-memory L-BFGS approximation, the inversion
takes O(m2d + m3) computational operation that is much smaller. It makes Cubic Regularized
L-BFGS computationally effective. Also, one can show that Bk is (L1,mL1)-inexact Hessian for
classical history approximation. For greedy or sample approximation, one can show that Bk is
(L1, 0)-inexact Hessian.

Theorem 8 Let f(x) be a star-convex function (Option A) or µ-strongly star-convex function
(Option B) with respect to global minimizer x∗, f(x) has L1-Lipschitz-continuous gradient and
L2-Lipschitz-continuous Hessian, Bk is an m-memory L-BFGS approximation, and M ≥ L2,
then the total number of iteration T ≥ 1 of the Cubic L-BFGS to find ε-solution xT such that
f(xT )− f(x∗) ≤ ε is bounded by

Option A T = O(1)max

{
mL1R

2

ε
;

√
MR3

ε

}
, (19)

Option B T = O(1)max

{
1;

mL1

µ
;

√
MR

µ

}
log

(
f(x0)− f(x∗

ε

)
, (20)

where R = ∥x0 − x∗∥.

We share the details in the full paper.
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5. Experiments

In this section, we present numerical experiments, which we conducted in order to show the ef-
ficiency of our proposed method. We consider l2-regularized logistic regression problems of the
form

F (w) =
1

n

n∑
i=1

log(1 + exp(−yix
T
i w)) +

µ

2
∥w∥2, (21)

where (xi, yi)
n
i=1 are the training examples described by features xi and the class yi ∈ {−1, 1},

and µ > 0 is the regularization parameter. The datasets (a9a,w8a and madelon) used to present the
results were taken from LibSVM library [6]. We compared the performance of Cubic L-BFGS with
gradient descent (GD), Cubic Newton and classical quasi-Newton method (LBFGS). In Figures 4
and 1, we consider the classification problem on a9a dataset [6]. To get better test results, the
regularization µ = 10−4. Memory-size for both variants ofL-BFGS is m = 10. In order to show the
globalisation properties of the methods, we consider the case when the starting point is x0 = 10 · e,
where e is the all-one vector. For results shown in Figure 1, the parameters are fine-tuned and equal
to L1 = 0.04, lr = 0.0123 and L2 = 0.011. For Figure 4, we use theoretical parameters L1 = 0.25,
lr = µ/(L2

1), L2 = 0.1 (of GD, L-BFGS, cubic Newton and cubic L-BFGS respectively) for all the
methods. One can see that Cubic L-BFGS is very close to classical Cubic L-BFGS but with much
less computations with O(m2d+m3) ∼ 104 compared to O(d3) ∼ 106.
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Figure 1: Methods’ performance for logistic regression task on a9a dataset for x0 = 10 · e and
fined-tuned parameters.
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Figure 2: Methods’ performance for logistic regression task on a9a dataset for x0 = 10 · e and
theoretical parameters.
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Appendix A.
Missing parts from Section 2

We denote by E∗ dual space of E. It is the space of all linear functions on E. The value of linear
function g ∈ E∗ at h ∈ E is denoted by ⟨g, h⟩. We assume that function f(x) is twice continuous
differentiable. Then, ∇f(x) ∈ E∗ is its gradient, ∇2f(x) : E → E∗ is its Hessian, note that
∇2f(x)h ∈ E∗ for any h ∈ E. Using a self-adjoint positive-definite operator D : E → E∗, we can
endow spaces E and E∗ by conjugate Euclidean norms:

∥h∥ = ⟨Dh, h⟩1/2 , ∀h ∈ E; ∥g∥∗ =
〈
g,D−1g

〉1/2
, ∀g ∈ E∗.

For self-adjoint linear operator B : E → E∗, we define the standard spectral norm

∥B∥ = max
h∈E

{|⟨Bh, h⟩| : ∥h∥ ≤ 1} ,

note that it corresponds to maximal module of all eigenvalues computed with respect to D ≻ 0.

Appendix B.
Proofs of Section 3

Proof of Lemma 6
One can get the upper-bound (10) from (6)

f(y)− ϕx(y) ≤ f(y)− Φx(y) + Φx(y)− ϕx(y) ≤
L2

6
∥y − x∥3 +Φx(y)− ϕx(y)

≤ L2

6
∥y − x∥3 + 1

2

〈
(∇2f(x)−Bx)(y − x), y − x

〉 (6)
≤ L2

6
∥y − x∥3 + δup

2
∥y − x∥2.

The lower-bound (11) comes from (7)

ϕx(y)− f(y) ≤ Φx(y)− f(y) + ϕx(y)− Φx(y) ≤
L2

6
∥y − x∥3 + ϕx(y)− Φx(y)

≤ L2

6
∥y − x∥3 + 1

2

〈
(Bx −∇2f(x))(y − x), y − x

〉 (7)
≤ L2

6
∥y − x∥3 + δlow

2
∥y − x∥2.

Appendix C.
Extra Experiments

In Figures 3 and 4, we consider the task of classification on the a9a [6] dataset. For every data
sample the number of features is d = 123 and n = 20000. We consider two cases for the starting
point x0. For x0 = 0 and µ = 10−4, as it is shown from the figure 3 the Newton method converges
very quick so x0 = 0 is very close to the solution. In order to show the globalisation properties
of the methods we consider the case when the starting point is x0 = 10 · e, where e is the all-one
vector, as shown in figure 4. We use theoretical parameters L1 = 0.25, lr = µ/(L2

1), L2 = 0.1 (of
GD, L-BFGS, cubic Newton and cubic L-BFGS respectively) for all the methods.
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Figure 3: Comparison of Newton methods and gradient descent for logistic regression task on a9a
dataset for x0 = 0 and theoretical parameters.
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Figure 4: Comparison of Newton methods and gradient descent for logistic regression task on a9a
dataset for x0 = 10 · e and theoretical parameters.

We solve the following minimization problem:

min
w∈Rd

F (w) =
1

n

n∑
i=1

log(1 + exp(−yix
T
i w)) +

µ

2
∥w∥2, (22)

We normalise each data point and get ∥xi∥2 = 1 for all i ∈ [1, ..., n]. In Figures 5 and 6, we
consider the task of classification on the w8a [6] dataset. For every data sample the number of
features is d = 300 and n = 49749. We consider two cases for the starting point x0. For x0 = 0
and µ = 10−4 as it is shown from figure 5 the Newton method converges very quick. In order to
show the globalisation properties of the methods we consider the case when the starting point is
x0 = 8 · e, where e is all-one vector, and µ = 10−4. We use theoretical parameters L1 = 0.25,
lr = µ/(L2

1), L2 = 0.1 (of GD, L-BFGS, cubic Newton and cubic L-BFGS respectively) for all the
methods.
The parameters used for the results represented in figure 7 are x0 = 0, µ = 10−4, L1 = 0.03,
lr = 0.11 and L2 = 5 · 10−5. We use parameters x0 = 8 · e, µ = 10−4, L1 = 0.03, lr = 0.04 and
L2 = 5 · 10−5 for the results shown in figure 8.
In Figures 9 and 10, we consider the task of classification on the madelon [6] dataset. For every
data sample the number of features is d = 500 and n = 2000. We consider two cases for the starting
point x0 = 0 and x0 = 3·e with µ = 10−4. We use theoretical parameters L1 = 0.25, lr = µ/(L2

1),
L2 = 0.1 (of GD, L-BFGS, cubic Newton and cubic L-BFGS respectively) for all the methods.
The parameters used for the results presented in figures 11 and 12 are µ = 10−4, L1 = 0.2,
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Figure 5: Comparison of Newton methods and gradient descent for logistic regression task on w8a
dataset for x0 = 0 and theoretical parameters.
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Figure 6: Comparison of Newton methods and gradient descent for logistic regression task on w8a
dataset for x0 = 8 · e and theoretical parameters.

lr = 0.0025 and L2 = 0.02. The starting point for experiments on figure 11 is x0 = 0, while the
starting point for experiments in figure 12 is x0 = 3 · e, where e is the all-one vector.
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Figure 7: Comparison of Newton methods and gradient descent for logistic regression task on w8a
dataset for x0 = 0.
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Figure 8: Comparison of Newton methods and gradient descent for logistic regression task on w8a
dataset for x0 = 8 · e.
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Figure 9: Comparison of Newton methods and gradient descent for logistic regression task on
madelon dataset for x0 = 0 and theoretical parameters.
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Figure 10: Comparison of Newton methods and gradient descent for logistic regression task on
madelon dataset with x0 = 3 · e and theoretical parameters.
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Figure 11: Comparison of Newton methods and gradient descent for logistic regression task on
madelon dataset.
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Figure 12: Comparison of Newton methods and gradient descent for logistic regression task on
madelon dataset with x0 = 3 · e.
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