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Abstract
The gradient descent (GD) method has been used widely to solve parameter estimation in gen-
eralized linear models (GLMs), a generalization of linear models when the link function can be
non-linear. While GD has optimal statistical and computational complexities for estimating the
true parameter under the high signal-to-noise ratio (SNR) regime of the GLMs, it has sub-optimal
complexities when the SNR is low, namely, the iterates of GD require polynomial number of iter-
ations to reach the final statistical radius. The slow convergence of GD for the low SNR case is
mainly due to the local convexity of the least-square loss functions of the GLMs. To address the
shortcomings of GD, we propose to use the BFGS quasi-Newton method to solve parameter estima-
tion of the GLMs. On the optimization side, when the SNR is low, we demonstrate that iterates of
BFGS converge linearly to the optimal solution of the population least-square loss function. On the
statistical side, we prove that the iterates of BFGS reach the final statistical radius of the low SNR
GLMs after a logarithmic number of iterations, which is much lower than the polynomial number
of iterations of GD. We also present numerical experiments that match our theoretical findings.

1. Introduction
In supervised machine learning, we are given a set of n independent samples denoted by X1, . . . , Xn

with corresponding labels Y1, . . . , Yn, that are drawn from some unknown distribution and our goal
is to train a model that maps the feature vectors to their corresponding labels. We assume that the
data is generated according to distribution Pθ∗ parameterized by a ground truth parameter θ∗. Our
goal as the learner is to find θ∗ by solving the empirical risk minimization (ERM) problem:

min
θ∈Rd

Ln(θ) :=
1

n

n∑
i=1

ℓ(θ; (Xi, Yi)), (1)

where ℓ(θ; (Xi, Yi)) is the loss function that measures the error between the predicted output of
Xi using parameter θ and its true label Yi. If we define θ∗n as an optimal solution of the above
optimization problem, i.e., θ∗n ∈ argminθ∈Rd Ln(θ), it can be considered as an approximate of the
ground-truth solution θ∗, where θ∗ is also a minimizer of the population loss defined as

min
θ∈Rd

L(θ) := E [ℓ(θ; (X,Y ))] . (2)

If one can solve the empirical risk efficiently, the output model could be close to θ∗, when n is
sufficiently large. There are several works on studying the complexity of iterative methods for
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solving ERM or directly the population loss, for the case that the objective function is convex or
strongly convex with respect to θ [1, 2, 6, 11, 19, 20, 26, 37]. However, when we move beyond
linear models, the underlying loss becomes non-convex and the behavior of iterative methods could
change and they may not reach a neighborhood of a global minimizer of the ERM problem.

The focus of this paper is on the generalized linear model (GLM) [7, 12, 13, 28, 35] where
the labels and features are generated according to a polynomial link function and we have Yi =
(X⊤

i θ∗)p + ζi, where ζi is an additive noise and p ≥ 2 is an integer. Due to nonlinear structure
of the generative model, even if we select a convex loss function ℓ, the ERM problem denoted to
the considered GLM could be non-convex with respect to θ. Interestingly, depending on the norm
of θ∗, the curvature of the ERM and its corresponding population risk minimization problem could
change substantially. More precisely, if we are in the setting that ∥θ∗∥ is sufficiently large, which
we refer to this case as the high signal-to-noise ratio (SNR), the underlying population loss of the
problem of interest is locally strongly convex and smooth. On the other hand, when we are in the
regime that ∥θ∗∥ is close to zero, denoted by the low SNR regime, then the underlying problem is
neither strongly convex nor smooth, and in fact, it is ill-conditioned.

These observations lead to the conclusion that in the high SNR setting, due to strong convexity
and smoothness of the underlying problem, gradient descent (GD) reaches the statistical radius
exponentially fast. However, in the low SNR case, as the problem becomes locally convex, GD
converges at a sublinear rate to the final statistical radius and thus requires polynomial number of
iterations in terms of the sample size. To resolve this issue, in [30] the authors recommended the use
of GD with Polyak step size to accelerate the convergence of GD in the low SNR setting, and they
showed that the number of iterations becomes logarithmic function of the sample size. However,
as this method is still a first-order method, its complexity scales linearly by the condition number
of the problem which depends on the condition number of the feature vectors covariance as well as
the norm ∥θ∗∥. Moreover, implementation of Polyak step size requires the knowledge of optimal
objective function value. These points lead to the following question: Can we find a method that
performs well in both high and low SNR settings at a reasonable per iteration computational cost?

Contributions. In this paper, we show that the answer to the above question is positive and
the BFGS method is capable of achieving these goals. In particular, we show that in the low SNR
regime, which is not strictly convex, the iterates generated by the BFGS method converges linearly
(exponentially fast) and outperforms GD. We also discuss why in the high SNR regime the BFGS
method converges to the ground-truth (in the population case) at a superlinear rate.

2. BFGS algorithm
In this section, we briefly review the basics of the BFGS quasi-Newton method, which is the main
algorithm we analyze in this paper. Consider the case that we aim to minimize a differentiable
convex function f : Rd → R with optimal solution θ̂. The iterative method is defined as

θk+1 = θk − ηkHk∇f(θk), ∀k ≥ 0, (3)

where Hk ∈ Rd×d is the matrix and ηk is the step size. The main idea of quasi-Newton methods is to
come up with a Hessian inverse approximation matrix Hk that is close to the exact Hessian inverse
∇2f(θk)

−1 using only first-order information. There are several approaches for approximating Hk

leading to different quasi-Newton methods, [3–5, 8, 9, 14–16, 18, 25, 29, 34], but here, we focus on
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the BFGS method, in which Hk is updated as

Hk =

(
I −

sk−1u
⊤
k−1

s⊤k−1uk−1

)
Hk−1

(
I −

uk−1s
⊤
k−1

s⊤k−1uk−1

)
+

sk−1s
⊤
k−1

s⊤k−1uk−1
, ∀k ≥ 1, (4)

where the variable variation sk−1 and gradient displacement uk−1 are defined as

sk−1 := θk − θk−1, uk−1 := ∇f(θk)−∇f(θk−1), ∀k ≥ 1, (5)

respectively. The main logic behind the update in (4) is to ensure that the Hessian inverse approxi-
mation matrix Hk satisfies the secant condition Hkuk−1 = sk−1.

The main advantage of BFGS is its fast superlinear convergence rate. For the past few decades,
all the superlinear convergence results of quasi-Newton method are asymptotic. Recently, non-
asymptotic superlinear convergence rates of quasi-Newton method have been established in [21–
24, 31–33, 36]. However, all these superlinear convergence analyses require the objective function
to be smooth and strictly or strongly convex. In this paper, as mentioned later, we will face settings
in which the Hessian at the optimal solution could be singular, and, hence the above convergence
guarantees do not hold and hence we need to establish new convergence guarantees for BFGS.

3. Generalized linear model with polynomial link function
In this section, we present the generalized linear model (GLM) setting that we consider in our paper,
and discuss the low and high SNR settings and optimization challenges corresponding to these cases.
Consider the case that the feature vectors are denoted by X ∈ Rd and their corresponding labels are
denoted by Y ∈ R. Suppose that we have access to n sample points (Y1, X1), . . . , (Yn, Xn) that
are i.i.d. samples from the following GLM with polynomial link function of power p, i.e.,

Yi = (X⊤
i θ∗)p + ζi, (6)

where θ∗ is a true but unknown parameter, p ∈ N is a given power, and ζ1, . . . , ζn are independent
noises with zero mean and variance σ2. Further, we assume that the feature vectors are such that
X ∈ Rd ∼ N (0,Σ) where Σ ∈ Rd×d is a positive definite matrix. In this setting, when p = 1, the
model in (6) is the standard linear model, while when p = 2, it corresponds to the phase retrieval
model [13]. Here, we focus on the settings that p ≥ 2. For the parameter estimation, there exist three
regimes of GLMs (6): (1) Low SNR regime: ∥θ∗∥/σ ≤ C1(d/n)

1/(2p) where d is the dimension,
n is the sample size, and C1 is a universal constant; (2) Middle SNR regime: C1(d/n)

1/(2p) ≤
∥θ∗∥/σ ≤ C2 where C2 is a universal constant; and (3) High SNR regime: ∥θ∗∥ ≥ C2.

It can be verified that the ERM problem corresponding to the above model for p ≥ 2 with
quadratic loss ℓ is a non-convex function with respect to θ and finding a global minimizer of that
could be a challenging task. On the other hand, it is locally strongly convex when we are in the high
signal-to-noise ratio (SNR) case. In the low SNR setting, however, the problem becomes convex
and the strong convexity condition does not hold. To showcase this issue, let us focus first on the
population loss, which is the limit of the ERM when the sample size goes to infinity. Note that
the population loss in the considered generalized linear model (6) with a quadratic loss function
ℓ is given by minθ∈Rd L(θ) = EX,Y [(Y − (X⊤θ)p)2], which based on the assumptions on the
generalized linear model setting and the distribution of the noise can be simplified as

min
θ∈Rd

L(θ) = EX

[ (
(X⊤θ∗)p − (X⊤θ)p

)2 ]
+ σ2. (7)
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Indeed, the ground truth parameter θ∗ is an optimal solution of the above. Next, we discuss the
structure of the objective function in (7) for low and high SNR settings.

High signal-to-noise regime. In the setting that the ground truth parameter has a relative large
norm, i.e., ∥θ∗∥/σ ≥ C for some universal constant C > 0, the population loss function in (7) is
locally strongly convex and smooth around θ∗. More precisely, when ∥θ − θ∗∥ is small, we have
(X⊤θ∗)p − (X⊤θ)p = p(X⊤θ∗)p−1X⊤(θ − θ∗) + o(∥θ − θ∗∥). Hence, in a neighborhood of the
optimal solution, the objective in (7) can be approximated as

L(θ) = p2(θ − θ∗)⊤EX

[
X(X⊤θ∗)2p−2X⊤

]
(θ − θ∗) + σ2 + o(∥θ − θ∗∥2).

Indeed, if ∥θ∗∥ ≥ Cσ2 the above objective function behaves as a quadratic function that is smooth
and strongly convex, assuming that o(∥θ− θ∗∥2) is negligible. Since the population loss in the high
SNR case is approximately a strongly convex smooth quadratic function, the iterates of gradient
descent (GD) converge to the solution at a linear rate and hence it requires κ log(1/ϵ) to reach an
ϵ-accurate solution, where κ depends on the conditioning of the covariance matrix Σ and the norm
of θ∗. In this case, BFGS converges superlinearly to the optimal solution and the rate would be
independent of κ, however the cost per iteration would be O(d2).

Low signal-to-noise regime. As mentioned above, in the high SNR case, GD has a fast linear
rate. However, in the low SNR case where ∥θ∗∥ is small and close to zero, the strong convexity
parameter approaches zero and the problem becomes ill-conditioned. In this case, we deal with a
function that is only convex and its gradient is not Lipschitz continuous. To better elaborate on this
point, let us focus on the case that θ∗ = 0. Considering the underlying distribution of X , which is
X ∼ N (0,Σ), for such a low SNR case, the population loss can be written as

L(θ) = EX [(X⊤θ)2p] + σ2 = (2p− 1)!!∥Σ1/2θ∥2p + σ2. (8)

Since we focus on p ≥ 2 it can be verified that this objective function is not strongly convex in a
neighborhood of θ∗ = 0. For this problem, GD with constant step size converges at a sublinear rate,
and hence, GD iterates require polynomial number of iterations to reach the final statistical radius.

4. Convergence analysis for the low signal-to-noise case
In this section, we focus on the convergence properties of BFGS for solving the population loss in
the case of low signal-to-noise introduced in (8). This analysis provides an intuition for the analysis
of the finite sample case that we discuss in Section B, as we expect these two loss functions to be
close to each other when the number of samples n is sufficiently large. Note that the loss function
in (8) can be considered as a special case of the following convex optimization problem:

min
θ∈Rd

f(θ) = ∥Aθ − b∥q, (9)

where A ∈ Rm×d is a matrix, b ∈ Rm is a given vector, and q satisfies that q ≥ 4. We should
note that for q ≥ 4, the considered objective is not strictly convex because the Hessian matrix is
singular when Aθ = b. Indeed, if we set m = d and further let A be Σ1/2 and choose b = Aθ∗ = 0,
then we recover the problem in (8) for q = 2p. Instead of solving (8), we focus on the convergence
analysis of BFGS quasi-Newton method for solving the convex function in (9), as it is a more
general function and our results are of general interest from an optimization point of view. To the
best of our knowledge, there is no global convergence theory (without line-search) for BFGS when
the function is not strictly convex, and our analysis provides the first result for such general setting.
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Assumption 4.1 We assume that there exists θ̂ ∈ Rd, such that b = Aθ̂. This is equivalent to that
vector b is in the range space of matrix A.

Note that the above assumption is indeed satisfied in our considered setting low SNR case in (8) as
we assume θ∗ = 0 which implies b = 0.

Assumption 4.2 The matrix A⊤A ∈ Rd×d is invertible. This is equivalent to that matrix A⊤A is
symmetric positive definite, i.e. A⊤A ≻ 0.

The above assumption is also easily satisfied for our considered setting as we assume that the co-
variance matrix for our input features is positive definite. Combining Assumption 4.1 and 4.2, we
conclude that θ̂ is the unique optimal solution of the problem (9). Next, we formally state the
convergence rate of BFGS for solving problem 9 under the disclosed assumptions.

Theorem 1 Consider the update of BFGS in (3), (4) and (5). Suppose Assumptions 4.1 and 4.2
are satisfied, and the initial point θ0 is an arbitrary vector in Rd and the initial Hessian inverse
approximation matrix is selected as H0 = ∇2f(θ0)

−1. If the step size of BFGS is selected as
ηk = 1 for all k ≥ 0, then the iterates of BFGS converge to the optimal solution θ̂ at a linear rate of

∥θk − θ̂∥ ≤ rk−1∥θk−1 − θ̂∥, ∀k ≥ 1, (10)

where the contraction factors rk ∈ [0, 1) satisfy the following conditions

r0 =
q − 2

q − 1
, rk =

1− rq−2
k−1

1− rq−1
k−1

, ∀k ≥ 1. (11)

The above theorem shows that the iterates of BFGS converge globally at a linear rate to the
optimal solution of (9). This result is of interest as it illustrates the iterates generated by BFGS
converge globally without any line search scheme and the stepsize is fixed as ηk = 1 for any k ≥ 0.
Moreover, the initial point θ0 could be any vector and there is no restriction on the distance between
θ0 and optimal solution θ̂. Most analyses of quasi-Newton methods require the initial point θ0 to
be in a local neighborhood of θ̂ to guarantee the linear or superlinear convergence rate, without
line-search. Note that the result in Theorem 1 does not specify the exact complexity of BFGS for
solving problem(9), as the contraction factors rk are not explicitly given. In the following theorem,
we show that for q ≥ 4, the linear rate contraction factors {rk}∞k=0 also converge linearly to a fixed
point contraction factor r∗ determined by the parameter q.

Theorem 2 Consider the linear convergence factors {rk}∞k=0 defined in (11) from Theorem 1. If
q ≥ 4, then the sequence {rk}∞k=0 converges to r∗ ∈ (0, 1) that is determined by the equation

rq−1
∗ + rq−2

∗ = 1, (12)

and the rate of convergence is linear with a contract factor that is at most 1/2, i.e.,

|rk − r∗| ≤ (1/2)k |r0 − r∗|, ∀k ≥ 0. (13)

Theorem 2 presented that eventually, the iterations generated by BFGS converge to the optimal
solution at the linear rate r∗ determined by (12). More specifically, the factors {rk}∞k=0 converge
to the fixed point r∗ with the linear rate 1/2. Therefore, the linear convergence factors {rk}∞k=0
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and the fixed point r∗ are totally determined by the parameter q. They are all independent of the
dimension d and the condition number κA of the matrix A. Hence, the performance of the BFGS
method is not influenced by high-dimensional or ill-conditioned problems. This is different from the
common convergence theories of most optimization algorithms, whose performance is deteriorated
heavily under the circumstance of high dimension or ill conditioning. We should add that this result
is independently important from the optimization point of view as it provides the first global linear
convergence of BFGS without line-search for a setting that is not strictly or strongly convex.

6



References

[1] A. Agarwal, S. Negahban, and M. J. Wainwright. Fast global convergence of gradient methods
for high-dimensional statistical recovery. Annals of Statistics, 40(5):2452–2482, 2012.

[2] S. Balakrishnan, M. J. Wainwright, and B. Yu. Statistical guarantees for the EM algorithm:
From population to sample-based analysis. Annals of Statistics, 45:77–120, 2017.

[3] C. G. Broyden, J. E. Dennis Jr., Broyden, and J. J. More. On the local and superlinear conver-
gence of quasi-Newton methods. IMA J. Appl. Math, 12(3):223–245, June 1973.

[4] Charles G Broyden. A class of methods for solving nonlinear simultaneous equations. Math-
ematics of computation, 19(92):577–593, 1965.

[5] Charles G Broyden. The convergence of single-rank quasi-Newton methods. Mathematics of
Computation, 24(110):365–382, 1970.

[6] Emmanuel J. Candes, Yonina Eldar, Thomas Strohmer, and Vlad Voroninski. Phase retrieval
via matrix completion, 2011.

[7] R. J. Carroll, J. Fan, I. Gijbels, and M. P. Wand. Generalized partially linear single-index
models. Journal of the American Statistical Association, 92:477–489, 1997.

[8] Andrew R. Conn, Nicholas I. M. Gould, and Ph L Toint. Convergence of quasi-Newton ma-
trices generated by the symmetric rank one update. Mathematical programming, 50(1-3):
177–195, 1991.

[9] WC Davidon. Variable metric method for minimization. Technical report, Argonne National
Lab., Lemont, Ill., 1959.

[10] R. Dwivedi, N. Ho, K. Khamaru, M. J. Wainwright, M. I. Jordan, and B. Yu. Sharp analysis
of expectation-maximization for weakly identifiable models. AISTATS, 2020.

[11] R. Dwivedi, N. Ho, K. Khamaru, M. J. Wainwright, M. I. Jordan, and B. Yu. Singularity,
misspecification, and the convergence rate of EM. Annals of Statistics, 44:2726–2755, 2020.

[12] Xiaoming Chen Feiyan Tian, Lei Liu. Generalized memory approximate message passing.
https://arxiv.org/abs/2110.06069, 2021.

[13] J. R. Fienup. Phase retrieval algorithms: a comparison. Appl. Opt., 21(15):2758–2769, Aug
1982. doi: 10.1364/AO.21.002758. URL http://www.osapublishing.org/ao/
abstract.cfm?URI=ao-21-15-2758.

[14] Roger Fletcher. A new approach to variable metric algorithms. The computer journal, 13(3):
317–322, 1970.

[15] Roger Fletcher and Michael JD Powell. A rapidly convergent descent method for minimiza-
tion. The computer journal, 6(2):163–168, 1963.

[16] David M Gay. Some convergence properties of Broyden’s method. SIAM Journal on Numeri-
cal Analysis, 16(4):623–630, 1979.

7

http://www.osapublishing.org/ao/abstract.cfm?URI=ao-21-15-2758
http://www.osapublishing.org/ao/abstract.cfm?URI=ao-21-15-2758


[17] Kazimierz Goebel and W. A. Kirk. Topics in Metric Fixed Point Theory. Cambridge University
Press, 1990.

[18] Donald Goldfarb. A family of variable-metric methods derived by variational means. Mathe-
matics of computation, 24(109):23–26, 1970.

[19] Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of
stochastic gradient descent. In Maria Florina Balcan and Kilian Q. Weinberger, editors, Pro-
ceedings of The 33rd International Conference on Machine Learning, volume 48 of Proceed-
ings of Machine Learning Research, pages 1225–1234, New York, New York, USA, 20–22
Jun 2016. PMLR. URL http://proceedings.mlr.press/v48/hardt16.html.

[20] N. Ho, K. Khamaru, R. Dwivedi, M. J. Wainwright, M. I. Jordan, and B. Yu. Instability,
computational efficiency and statistical accuracy. Arxiv Preprint Arxiv: 2005.11411, 2020.

[21] Qiujiang Jin and Aryan Mokhtari. Non-asymptotic superlinear convergence of standard quasi-
newton methods. arXiv preprint arXiv:2003.13607, 2020.

[22] Qiujiang Jin, Alec Koppel, Ketan Rajawat, and Aryan Mokhtari. Sharpened quasi-newton
methods: Faster superlinear rate and larger local convergence neighborhood. The 39th Inter-
national Conference on Machine Learning (ICML 2022), 2022.

[23] Dachao Lin, Haishan Ye, and Zhihua Zhang. Explicit superlinear convergence of broyden’s
method in nonlinear equations. arXiv preprint arXiv:2109.01974, 2021.

[24] Dachao Lin, Haishan Ye, and Zhihua Zhang. Greedy and random quasi-newton methods with
faster explicit superlinear convergence. Advances in Neural Information Processing Systems
34, 2021.

[25] Dong C Liu and Jorge Nocedal. On the limited memory BFGS method for large scale opti-
mization. Mathematical programming, 45(1-3):503–528, 1989.

[26] Po-Ling Loh and Martin J Wainwright. Regularized M-estimators with nonconvexity: Sta-
tistical and algorithmic theory for local optima. Journal of Machine Learning Research, 16:
559–616, 2015.

[27] Wenlong Mou, Nhat Ho, Martin J Wainwright, Peter Bartlett, and Michael I Jordan. A
diffusion process perspective on posterior contraction rates for parameters. arXiv preprint
arXiv:1909.00966, 2019.

[28] Praneeth Netrapalli, Prateek Jain, and Sujay Sanghavi. Phase retrieval using alternating
minimization. IEEE Transactions on Signal Processing, 63(18):4814–4826, 2015. doi:
10.1109/TSP.2015.2448516.

[29] Jorge Nocedal. Updating quasi-Newton matrices with limited storage. Mathematics of com-
putation, 35(151):773–782, 1980.

[30] Tongzheng Ren, Fuheng Cui, Alexia Atsidakou, Sujay Sanghavi, and Nhat Ho. Towards
statistical and computational complexities of Polyak step size gradient descent. Artificial In-
telligence and Statistics Conference, 2022.

8

http://proceedings.mlr.press/v48/hardt16.html


[31] Anton Rodomanov and Yurii Nesterov. Greedy quasi-newton methods with explicit superlin-
ear convergence. SIAM Journal on Optimization, 31(1):785–811, 2021.

[32] Anton Rodomanov and Yurii Nesterov. Rates of superlinear convergence for classical quasi-
newton methods. Mathematical Programming, pages 1–32, 2021.

[33] Anton Rodomanov and Yurii Nesterov. New results on superlinear convergence of classical
quasi-newton methods. Journal of Optimization Theory and Applications, 188(3):744–769,
2021.

[34] David F Shanno. Conditioning of quasi-Newton methods for function minimization. Mathe-
matics of computation, 24(111):647–656, 1970.

[35] Yoav Shechtman, Yonina C. Eldar, Oren Cohen, Henry Nicholas Chapman, Jianwei Miao,
and Mordechai Segev. Phase retrieval with application to optical imaging: A contemporary
overview. IEEE Signal Processing Magazine, 32(3):87–109, 2015. doi: 10.1109/MSP.2014.
2352673.

[36] Haishan Ye, Dachao Lin, Zhihua Zhang, and Xiangyu Chang. Explicit superlinear convergence
rates of the sr1 algorithm. arXiv preprintarXiv:2105.07162, 2021.

[37] Xiao-Tong Yuan and Tong Zhang. Truncated power method for sparse eigenvalue problems.
Journal of Machine Learning Research, 14(Apr):899–925, 2013.

9



Appendix A. Comparison with Newton’s method

Next, we compare the convergence results of BFGS for solving problem (9) with the one for
Newton’s method. The following theorem characterize the global linear convergence of Newton’s
method with unit step size applied to the objective function in (9).

Theorem 3 Consider applying Newton’s method to optimization problem (9) and suppose Assump-
tions 4.1 and 4.2 hold. Moreover, suppose the step size is ηk = 1 for any k ≥ 0. Then, the iterates
of Newton’s method converge to the optimal solution θ̂ at a linear rate of

∥θk − θ̂∥ =
q − 2

q − 1
∥θk−1 − θ̂∥, ∀k ≥ 1. (14)

Moreover, this linear convergence rate q−2
q−1 is smaller than the fixed point r∗ defined in (12) of the

BFGS quasi-Newton method, i.e., q−2
q−1 < r∗ <

2q−3
2q−2 for all q ≥ 4.

The proof is available in Appendix D.3. The convergence results of Newton’s method are also
global without any backtracking line search method, and the linear rate q−2

q−1 is independent of di-
mension d and condition number κA. Furthermore, the condition q−2

q−1 < r∗ implies that iterates of
Newton’s method converge faster than BFGS, but the gap is not substantial as we illustrate in our
numerical results. On the other hand, the computational cost per iteration of Newton’s method is
O(d3) which is much worse than the O(d2) of BFGS.

Moving back to our main problem, one important implication of the above convergence results
is that in the low signal-to-noise ratio setting the iterates of BFGS converge linearly to the optimal
solution of the population least-square loss function, while the contraction coefficient of BFGS
is comparable to that of Newton’s method which is (2p − 2)/(2p − 1). For example, for p =
2, 3, 5, 10, the linear rate contraction factor of Newton’s method are 0.667, 0.8, 0.889, 0.947 and the
approximate linear rate contraction factor of BFGS denoted by r∗ are 0.755, 0.857, 0.922, 0.963,
respectively. We use this intuition to establish a similar result for the finite sample case in the
following section.

Appendix B. Statistical rate of BFGS for solving the sample least-square loss
Thus far, we have demonstrated that the BFGS iterates converge linearly to the true parameter θ∗ for
solving the population least-square loss function L of the generalized linear models in equation (8).
It provides important insight into the behaviors of the BFGS iterates when the sample size n is
infinite. In this section, we would like to study the statistical behaviors of the BFGS iterates for
solving the least-square loss function Ln, which is given by:

min
θ∈Rd

Ln(θ) :=
1

n

n∑
i=1

(Yi − (X⊤
i θ)p)2. (15)

To simplify the proof argument and gain the insight into the statistical behaviors of the BFGS
iterates, we focus on the univariate setting, namely, d = 1. Note that the statistical behaviors of
BFGS iterates still hold in multivariate settings, namely, d ≥ 2 (See our experiments in Figure 3).
When d = 1, the BFGS iterates for solving the sample loss function take the following form:

θnk+1 = θnk − ηk
θnk − θnk−1

∇Ln(θnk )−∇Ln(θnk−1)
∇Ln(θ

n
k ). (16)
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Throughout this section, we consider the step size ηk = 1 in the updates (16) of BFGS. We show that
the BFGS iterates (16) {θnk}k≥0 converge to the final statistical radius after a logarithmic number of
iterations under the low SNR regimes of the generalized linear models.

Theorem 4 Consider the low SNR regime of the generalized linear model (6) namely, |θ∗| ≤
C̄σn−1/(2p) for some constant C̄, for d = 1. For any failure probability δ ∈ (0, 1), if the number
of samples is n ≥ C1 log

2p(n/δ), where C1 is a universal constant independent of n and δ, and the

number of iterations satisfies k ≥
log log(n/δ)− logn

2p
−log(|θn0−θ∗n|)

log
(
1− 1

e(2p−1)

) , then with probability 1− δ we have

|θnk − θ∗| ≤ C2

(
log2p(n/δ)

n

) 1
2p

, (17)

where C2 is a universal constant independent of n and δ.

The proof is available in Appendix D.4. As we often start the optimization algorithm with an iterate
that is not very close to the solution and hence we have θn0 = Θ(1). Considering these bounds,
the lower bound on the number of iterations can be simplified as k = Θ(2p−1

2p log n). This shows
that BFGS achieves the statistical accuracy in O(log n) iterations, which is faster than the sublinear

convergence O(n
p−1
p ) of GD shown in [30]. A few comments about Theorem 4 are in order.

Comparing to GD, GD with Polyak step size , and Newton’s method: The result of Theo-
rem 4 indicates that under the low SNR regime, the BFGS iterates reach the final statistical radius
O(n−1/(2p)) within the true parameter θ∗ after O(log(n)) number of iterations. This complexity in-
deed is better than the polynomial number of iterations of GD, which is at the order of O(n(p−1)/p)
(Corollary 3 in [20]). It is also comparable to the logarithmic number of iterations of GD with
Polyak step size which requires O(κ log(n)) iterations (Corollary 1 in [30]), where κ is the condi-
tion number of the covriance matrix Σ, and the O(log(n)) of Newton’s method (Corollary 3 in [20])
to reach the similar statistical radius.

Note that while the iteration complexity of BFGS is comparable to that of GD with Polyak step
size in terms of the sample size, the BFGS overcomes the need to approximate the optimal value of
the sample least-square loss Ln, which can be unstable in practice, and also removes the dependency
on the condition number that appears in the complexity bound of GD with Polyak step size. Finally,
though the BFGS algorithm and the Newton’s method have similar computational complexity in
terms of n, BFGS has lower per iteration cost in comparison to Newton’s method.

On the minimum number of iterations: The results of BFGS in Theorem 4 involve the min-
imum number of iterations, namely, these results only hold for some 1 ≤ t ≤ k. It suggests that
the BFGS iterates may diverge after they reach the final statistical radius under each regime of the
generalized linear models. As highlighted in [20], such instability behavior of BFGS is inherent to
fast and unstable methods. While it may sound limited, the minimum number of iterations can be
overcome via an early stopping scheme using the cross-validation approaches. We illustrate such
early stopping of the BFGS iterates for the low SNR regime in Figure 3.

Generalization of the results to multivariate settings: While the results of Theorem 4 are
only established for the univariate setting, we remark that it is mainly for the simplicity of the proof
argument and of the BFGS iterates. In the experiments of Figures 3, we run BFGS for the case
that dimension is d = 4 and observe that both the statistical radius and the iteration complexities
of BFGS are still consistent with those in Theorem 4. We leave a theoretical verification of these
results in multivariate settings for the future work.
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Figure 1: Convergence of factors {rk}∞k=0 to r∗.
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Figure 2: Convergence rates of Newton’s method, BFGS, GD with constant step size and GD with
Polyak step size for different d and q. In plot (a), m = 100 and η = 10−4. In plot (b),
m = 100 and η = 10−8. In plot (c), m = 2000 and η = 10−12. In plot (d), m = 2000
and η = 10−15.

Appendix C. Numerical experiments
Numerical experiment for the population loss function. In this section, we compare the per-
formance of Newton’s method, BFGS, GD with constant step size, and GD with Polyak step size
applied to (9) which corresponds to the population loss. We choose different values of parameter
m, dimension d and the exponential parameter q in (9). We generate a random matrix A ∈ Rm×d

and a random vector θ̂ ∈ Rd, and compute the vector b = Aθ̂ ∈ Rd. The initial point θ0 ∈ Rd is
also generated randomly. The GD constant step size η is tuned by hand to achieve the best perfor-
mance of GD on each problem. We present the logarithmic scale of ∥θk − θ̂∥ versus the number of
iteration k for different algorithms. All the values of different parameters m, d, q and η as well as
the numerical results of our experiments are shown in Figure 2.

We observe that GD with constant step converges very slowly since it can only reach a sub-linear
convergence rate. The performance of GD with Polyak step size is also poor when dimension is large
or the parameter q is huge. This is due to the fact that as dimension increases the problem becomes
more ill-conditioned and hence the linear convergence contraction factor approaches 1. We observe
that both Newton’s method and the BFGS method generate iterations with linear convergence rates,
and their linear convergence rates are only affected by the parameter q. The dimension d has no
impact over the performance of BFGS and Newton’s method. Although the convergence speed of
Newton’s method is faster than the BFGS method, their gap is not significantly large. We should
add that these empirical results are consistent with the theoretical results we obtained in Section 4.
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Figure 3: Illustration of different methods with high SNR regime in (a) and low SNR regime in (b).
Illustration of the statistical radius of BFGS with high SNR regime in (c) and low SNR
regime in (d).

Numerical experiment for the empirical loss function. We now move to illustrate the statistical
and computational complexities of BFGS for parameter estimation of the generalized linear model.
In our experiments, we specifically consider the dimension to be d = 4 and the power of the link
function to be p = 2, namely, we consider the multivariate setting of the phase retrieval problem.
The data is generated by first sampling the inputs according to {Xi}ni=1 ∼ N (0,diag(σ2

1, · · · , σ2
4))

where σk = (0.5)k−1, and then generating their labels based on Yi = (X⊤
i θ∗)2 + ζi where {ζi}ni=1

are i.i.d. samples from N (0, 0.01). In the low SNR regime, we set θ∗ = 0, and in the high SNR
regime we select θ∗ uniformly at random from the unit sphere. Furthermore, for the GD, we choose
the step size to be η = 0.1, while for Newton’s method and BFGS, we select the unit stepsize η = 1.

In (a) and (b) of Figure 3, we consider the sample size n = 104 and run GD, GD with Polyak step
size, BFGS, and Newton’s method to find the optimal solution of the sample least-square loss Ln.
Furthermore, for both Newton’s method and the BFGS algorithm, due to their instability, we also
perform cross-validation to choose their early stopping. In particular, we split the data into training
and the test sets. The training set consists of 90% of the data while the test set has 10% of the data.
The yellow points in (a) and (b) of Figure 3 show the iterates of BFGS and Newton, respectively,
with the minimum validation loss. As we observe, under the low SNR regime, the iterates of GD
with Polyak step size, BFGS and Newton’s method converge geometrically fast to the final statistical
radius while those of the GD converge slowly to that radius. Under the high SNR regime, the
iterates of all of these methods converge geometrically fast to the final statistical radius. The faster
convergence of GD with Polyak step size over GD is due to the optimality of step size of, while
the faster convergence of BFGS and Newton’s method over GD is due to their independence on the
problem condition number. Finally, in (c) and (d) of Figure 3, we run the BFGS when the sample
size is from 102 to 104 to empirically verify the statistical radius of these methods. As indicated
in the plots of that figure, under the high SNR regime, the BFGS has statistical radius O(n−1/2),
while under the low SNR regime, its statistical radius becomes O(n−1/4). These empirical results
are consistent with the theoretical results of the BFGS in Theorem 4.
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Appendix D. Proof of Lemmas and Theorems

Lemma 5 Consider the objective function in (9) satisfying Assumption 4.1 and 4.2. Then, the
inverse matrix of its Hessian ∇2f(θ) can be expressed as

∇2f(θ)−1 =
(A⊤A)−1

q∥Aθ − b∥q−2
− (q − 2)(θ − θ̂)(θ − θ̂)⊤

q(q − 1)∥Aθ − b∥q
. (18)

Proof Notice that the Hessian of objective function (9) can be expressed as

∇2f(θ) = q∥Aθ − b∥q−2A⊤A+ q(q − 2)∥Aθ − b∥q−4A⊤(Aθ − b)(Aθ − b)⊤A. (19)

We use the Sherman–Morrison formula. Suppose that X ∈ Rd×d is an invertible matrix and a, b ∈
Rd are two vectors satisfying that 1 + b⊤X−1a ̸= 0. Then, the matrix X + ab⊤ is invertible and

(X + ab⊤)−1 = X−1 − X−1ab⊤X−1

1 + b⊤X−1a
. (20)

Applying the Sherman–Morrison formula with X = q∥Aθ − b∥q−2A⊤A, a = q(q − 2)∥Aθ −
b∥q−4A⊤(Aθ − b) and b = A⊤(Aθ − b). Notice that A⊤A is invertible, hence X is invertible and

1 + b⊤X−1a

= 1 + (Aθ − b)⊤A
(A⊤A)−1

q∥Aθ − b∥q−2
q(q − 2)∥Aθ − b∥q−4A⊤(Aθ − b)

= 1 + (q − 2)(Aθ − b)⊤A
(A⊤A)−1A⊤A(θ − θ̂)

∥Aθ − b∥2

= 1 + (q − 2)
(Aθ − b)⊤(Aθ − b)

∥Aθ − b∥2

= q − 1 ̸= 0. (Since q ≥ 4.)

(21)

Therefore, we obtain that

∇2f(θ)−1

=
(A⊤A)−1

q∥Aθ − b∥q−2
−

(A⊤A)−1

q∥Aθ−b∥q−2 q(q − 2)∥Aθ − b∥q−4A⊤(Aθ − b)(A⊤(Aθ − b))⊤ (A⊤A)−1

q∥Aθ−b∥q−2

q − 1

=
(A⊤A)−1

q∥Aθ − b∥q−2
− (q − 2)

q(q − 1)∥Aθ − b∥q
(A⊤A)−1AA⊤(θ − θ̂)(θ − θ̂)⊤AA⊤(A⊤A)−1

=
(A⊤A)−1

q∥Aθ − b∥q−2
− (q − 2)(θ − θ̂)(θ − θ̂)⊤

q(q − 1)∥Aθ − b∥q
.

(22)

As a consequence, we obtain the conclusion of the lemma.
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Lemma 6 Banach’s Fixed-Point Theorem. Consider the differentiable function f : D ⊂ R →
D ⊂ R. Suppose that there exists C ∈ (0, 1) such that |f ′(x)| ≤ C for any x ∈ D. Now let x0 ∈ D
be arbitrary and define the sequence {xk}∞k=0 as

xk+1 = f(xk), ∀k ≥ 0. (23)

Then, the sequence {xk}∞k=0 converges to the unique fixed point x∗ defined as

x∗ = f(x∗), (24)

with linear convergence rate of

|xk − x∗| ≤ Ck|x0 − x∗|, ∀k ≥ 0. (25)

Proof Check [17].

D.1. Proof of Theorem 1

We use induction to prove the convergence results in (10) and (11). Note that b = Aθ̂ by Assump-
tion 4.1 and the gradient and Hessian of the objective function in (9) are explicitly given by

∇f(θ) = q∥Aθ − b∥q−2A⊤(Aθ − b) = q∥Aθ − b∥q−2A⊤A(θ − θ̂), (26)

∇2f(θ) = q∥Aθ − b∥q−2A⊤A+ q(q − 2)∥Aθ − b∥q−4A⊤(Aθ − b)(Aθ − b)⊤A. (27)

Applying Lemma 5, we can obtain that

∇2f(θ)−1 =
(A⊤A)−1

q∥Aθ − b∥q−2
− (q − 2)(θ − θ̂)(θ − θ̂)⊤

q(q − 1)∥Aθ − b∥q
. (28)

First, we consider the initial iteration

θ1 = θ0 −H0∇f(θ0) = θ0 −∇f(θ0)
−1∇f(θ0), (29)

θ1 − θ̂ = θ0 − θ̂ −∇f(θ0)
−1∇f(θ0). (30)

Notice that b = Aθ̂ by Assumption 4.1 and

∇f(θ0)
−1∇f(θ0)

= [
(A⊤A)−1

q∥Aθ0 − b∥q−2
− (q − 2)(θ0 − θ̂)(θ0 − θ̂)⊤

q(q − 1)∥Aθ0 − b∥q
]q∥Aθ − b∥q−2A⊤A(θ0 − θ̂)

= θ0 − θ̂ − q − 2

q − 1

(θ0 − θ̂)⊤A⊤A(θ0 − θ̂)

∥Aθ0 − b∥2
(θ0 − θ̂)

= θ0 − θ̂ − q − 2

q − 1

(Aθ0 − b)⊤(Aθ0 − b)

∥Aθ0 − b∥2
(θ0 − θ̂)

= θ0 − θ̂ − q − 2

q − 1
(θ0 − θ̂).

(31)
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Therefore, we obtain that

θ1 − θ̂ = θ0 − θ̂ −∇f(θ0)
−1∇f(θ0) =

q − 2

q − 1
(θ0 − θ̂). (32)

Condition (10) holds for k = 1 with r0 =
q−2
q−1 . Now we assume that condition (10) holds for k = t

where t ≥ 1, i.e.,
θt − θ̂ = rt−1(θt−1 − θ̂). (33)

Considering the condition b = Aθ̂ in Assumption 4.1 and the condition in (33), we further have

Aθt − b = A(θt − θ̂) = rt−1A(θt−1 − θ̂) = rt−1(Aθt−1 − b), (34)

which implies that

∇f(θt) = qrq−1
t−1 ∥A(θt−1 − θ̂)∥q−2A⊤A(θt−1 − θ̂). (35)

We further show that the variable displacement and gradient difference can be written as

st−1 = θt − θt−1 = θt − θ̂ − θt−1 + θ̂ = (rt−1 − 1)(θt−1 − θ̂), (36)

and
ut−1 = ∇f(θt)−∇f(θt−1) = q(rq−1

t−1 − 1)∥A(θt−1 − θ̂)∥q−2A⊤A(θt−1 − θ̂). (37)

Considering these expressions, we can show that the rank-1 matrix in the update of BFGS ut−1s
⊤
t−1

is given by

ut−1s
⊤
t−1 = q(rq−1

t−1 − 1)(rt−1 − 1)∥A(θt−1 − θ̂)∥q−2A⊤A(θt−1 − θ̂)(θt−1 − θ̂)⊤, (38)

and the inner product s⊤t−1ut−1 can be written as

s⊤t−1ut−1 = q(rq−1
t−1 − 1)(rt−1 − 1)∥A(θt−1 − θ̂)∥q−2(θt−1 − θ̂)⊤A⊤A(θt−1 − θ̂)

= q(rq−1
t−1 − 1)(rt−1 − 1)∥A(θt−1 − θ̂)∥q.

(39)

These two expressions allow us to simplify the matrix I − ut−1s⊤t−1

s⊤t−1ut−1
in the update of BFGS as

I −
ut−1s

⊤
t−1

s⊤t−1ut−1
= I − A⊤A(θt−1 − θ̂)(θt−1 − θ̂)⊤

∥A(θt−1 − θ̂)∥2
. (40)

An important property of the above matrix is that its null space is the set of the vectors that are
parallel to ut−1. Considering the expression for ut−1, any vector that is parallel to A⊤A(θt−1 − θ̂)
is in the null space of the above matrix. We can easily observe that the gradient defined in (35)
satisfies this condition and therefore(

I −
ut−1s

⊤
t−1

s⊤t−1ut−1

)
∇f(θt)

= qrq−1
t−1 ∥A(θt−1 − θ̂)∥q−2

(
I − A⊤A(θt−1 − θ̂)(θt−1 − θ̂)⊤

∥A(θt−1 − θ̂)∥2

)
A⊤A(θt−1 − θ̂)

= qrq−1
t−1 ∥A(θt−1 − θ̂)∥q−2

(
A⊤A(θt−1 − θ̂)− A⊤A(θt−1 − θ̂)∥A(θt−1 − θ̂)∥2

∥A(θt−1 − θ̂)∥2

)
= 0.

(41)
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This important observation shows that if the condition in (33) holds, then the BFGS descent direc-
tion Ht∇f(θt) can be simplified as

Ht∇f(θt)

=

(
I −

st−1u
⊤
t−1

s⊤t−1ut−1

)
Ht−1

(
I −

ut−1s
⊤
t−1

s⊤t−1ut−1

)
∇f(θt) +

st−1s
⊤
t−1

s⊤t−1ut−1
∇f(θt)

=
st−1s

⊤
t−1

s⊤t−1ut−1
∇f(θt)

=
(rt−1 − 1)2(θt−1 − θ̂)(θt−1 − θ̂)⊤

q(rq−1
t−1 − 1)(rt−1 − 1)∥A(θt−1 − θ̂)∥q

qrq−1
t−1 ∥A(θt−1 − θ̂)∥q−2A⊤A(θt−1 − θ̂)

=
1− rt−1

1− rq−1
t−1

rq−1
t−1 (θt−1 − θ̂)

∥A(θt−1 − θ̂)∥q−2(θt−1 − θ̂)⊤A⊤A(θt−1 − θ̂)

∥A(θt−1 − θ̂)∥q

=
1− rt−1

1− rq−1
t−1

rq−1
t−1 (θt−1 − θ̂).

(42)

This simplification implies that for the new iterate θt+1, we have

θt+1 − θ̂ = θt −Ht∇f(θt)− θ̂ = θt − θ̂ − 1− rt−1

1− rq−1
t−1

rq−1
t−1

(θt − θ̂)

rt−1

=
1− rq−2

t−1

1− rq−1
t−1

(θt − θ̂) = rt(θt − θ̂),

(43)

where

rt =
1− rq−2

t−1

1− rq−1
t−1

. (44)

Therefore, we prove that condition (10) holds for k = t + 1. By induction, we prove the linear
convergence results in (10) and (11).

One property of this convergence results is that the error vectors {θk− θ̂}∞k=0 are parallel to each
other with the same direction as shown in (10). This indicates that the iterations {θk}∞k=0 converge
to the optimal solution θ̂ along the same straight line defined by θ0 − θ̂. Only the length of each
vector θk − θ̂ reduces to zero with the linear convergence rates {rk}∞k=0 specified in (11) and the
direction remains all the same.

D.2. Proof of Theorem 2

Recall that we have

r0 =
q − 2

q − 1
, rk =

1− rq−2
k−1

1− rq−1
k−1

, ∀k ≥ 1. (45)

Consider that q ≥ 4 and define the function g(r) as

g(r) :=
1− rq−2

1− rq−1
, r ∈ [0, 1]. (46)
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Suppose that r∗ ∈ (0, 1) satisfying that r∗ = g(r∗), which is equivalent to

rq−1
∗ + rq−2

∗ = 1. (47)

Notice that

g′(r) =
(q − 1)rq−2 − r2q−4 − (q − 2)rq−3

(1− rq−1)2
, (48)

and

(q − 1)rq−2 − r2q−4 − (q − 2)rq−3

= rq−3[(q − 1)(r − 1)− (rq−1 − 1)]

= rq−3(r − 1)(q − 1− rq−1 − 1

r − 1
)

= rq−3(r − 1)(q − 1−
q−2∑
i=0

ri).

(49)

Since r ∈ [0, 1], we have that

rq−3 ≥ 0, r − 1 ≤ 0,

q−2∑
i=0

ri ≤
q−2∑
i=0

1 = q − 1. (50)

Therefore, we obtain that

(q − 1)rq−2 − r2q−4 − (q − 2)rq−3 ≤ 0, (51)

and

|g′(r)| = r2q−4 + (q − 2)rq−3 − (q − 1)rq−2

(1− rq−1)2
. (52)

Our target is to prove that for any r ∈ [0, 1],

|g′(r)| ≤ 1

2
. (53)

First, we present the plots of |g′(r)| for r ∈ [0, 1] with 4 ≤ q ≤ 11 in Figure 4. We observe that
for 4 ≤ q ≤ 11, |g′(r)| ≤ 1/2 always holds.

Next, we prove that for q ≥ 12 and any r ∈ [0, 1], we have

|g′(r)| = (q − 1)rq−2 − r2q−4 − (q − 2)rq−3

(1− rq−1)2
≤ 1

2
, (54)

which is equivalent to

r2q−2 − 2r2q−4 − 2rq−1 + 2(q − 1)rq−2 − 2(q − 2)rq−3 + 1 ≥ 0, ∀r ∈ [0, 1]. (55)

Define the function h(r) as

h(r) := r2q−2 − 2r2q−4 − 2rq−1 + 2(q − 1)rq−2 − 2(q − 2)rq−3 + 1. (56)
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Figure 4: Plots of |g′(r)| with r ∈ [0, 1] for 4 ≤ q ≤ 11.

We obtain that
dh(r)

dr
= 2rq−4h(1)(r), (57)

where

h(1)(r) := (q − 1)rq+1 − 2(q − 2)rq−1 − (q − 1)r2 + (q − 1)(q − 2)r − (q − 2)(q − 3). (58)

Hence, we have that
dh(1)(r)

dr
= (q − 1)h(2)(r), (59)

where
h(2)(r) := (q + 1)rq − 2(q − 2)rq−2 − 2r + q − 2. (60)

Therefore, we obtain that

dh(2)(r)

dr
= h(3)(r) := (q + 1)qrq−1 − 2(q − 2)2rq−3 − 2, (61)

and
dh(3)(r)

dr
= rq−4h(4)(r), (62)

where
h(4)(r) := q(q + 1)(q − 1)r2 − 2(q − 2)2(q − 3). (63)

Now we define the function l(q) as

l(q) := 2(q − 2)2(q − 3)− q(q + 1)(q − 1)

= q3 − 14q2 + 33q − 24

= q2(q − 14) + 33(q − 1) + 9.

(64)
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We observe that for q ≥ 14, we have l(q) > 0 and we calculate that l(12) = 84 > 0 and l(13) =
236 > 0. Hence, we obtain that l(q) > 0 for all q ≥ 12, which indicates that for all r ∈ [0, 1],

r2 ≤ 1 <
2(q − 2)2(q − 3)

q(q + 1)(q − 1)
, (65)

q(q + 1)(q − 1)r2 − 2(q − 2)2(q − 3) < 0. (66)

Therefore, for all r ∈ [0, 1], h(4)(r) defined in (63) satisfies that h(4)(r) < 0 and from (62) we
know that dh(3)(r)

dr < 0. Hence, h(3)(r) defined in (61) is decreasing function and h(3)(r) <=

h(3)(0) = −2 < 0. We know that dh(2)(r)
dr = h(3)(r) < 0, which implies that h(2)(r) defined in

(60) is decreasing function. So we have that h(2)(r) ≥ h(2)(1) = 1 > 0. From (59) we know that
dh(1)(r)

dr > 0 and h(1)(r) defined in (58) is increasing function for r ∈ [0, 1]. Hence, we get that
h(1)(r) ≤ h(1)(1) = 0 and from (57) we obtain that h(r) defined in(56) is decreasing function for
r ∈ [0, 1]. Therefore, we have that h(r) ≥ h(1) = 0 and condition (55) holds for all r ∈ [0, 1],
which is equivalent to |g′(r)| ≤ 1/2.

In summary, we proved that for any q ≥ 12, we have |g′(r)| ≤ 1/2. Combining this with
the results from Figure 4, we obtain that |g′(r)| ≤ 1/2 holds for all q ≥ 4. Applying Banach’s
Fixed-Point Theorem from Lemma 6, we prove the final conclusion (13).

D.3. Proof of Theorem 3

Notice that the gradient and the Hessian of the objective function (9) can be expressed as

∇f(θ) = q∥Aθ − b∥q−2A⊤(Aθ − b) = q∥Aθ − b∥q−2A⊤A(θ − θ̂), (67)

∇2f(θ) = q∥Aθ − b∥q−2A⊤A+ q(q − 2)∥Aθ − b∥q−4A⊤(Aθ − b)(Aθ − b)⊤A. (68)

Applying Lemma 5, we can obtain that

∇2f(θ)−1 =
(A⊤A)−1

q∥Aθ − b∥q−2
− (q − 2)(θ − θ̂)(θ − θ̂)⊤

q(q − 1)∥Aθ − b∥q
. (69)

Hence, we have that for any k ≥ 1,

θk = θk−1 −∇f(θk−1)
−1∇f(θk−1), (70)

θk − θ̂ = θk−1 − θ̂ −∇f(θk−1)
−1∇f(θk−1). (71)

Notice that b = Aθ̂ by Assumption 4.1 and

∇f(θk−1)
−1∇f(θk−1)

= [
(A⊤A)−1

q∥Aθk−1 − b∥q−2
− (q − 2)(θk−1 − θ̂)(θk−1 − θ̂)⊤

q(q − 1)∥Aθk−1 − b∥q
]q∥Aθ − b∥q−2A⊤A(θk−1 − θ̂)

= θk−1 − θ̂ − q − 2

q − 1

(θ0 − θ̂)⊤A⊤A(θk−1 − θ̂)

∥Aθk−1 − b∥2
(θk−1 − θ̂)

= θk−1 − θ̂ − q − 2

q − 1

(Aθk−1 − b)⊤(Aθk−1 − b)

∥Aθk−1 − b∥2
(θk−1 − θ̂)

= θk−1 − θ̂ − q − 2

q − 1
(θk−1 − θ̂).

(72)
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Therefore, we prove the conclusion that for any k ≥ 1,

θk − θ̂ = θk−1 − θ̂ −∇f(θk−1)
−1∇f(θk−1) =

q − 2

q − 1
(θk−1 − θ̂). (73)

We observe that the iterations generated by Newton’s method also satisfy the parallel property,
i.e., all vectors {θk − θ̂}∞k=0 are parallel to each other with the same direction.

Notice that the function h(r) = rq−1 + rq−2 is strictly increasing and h( q−2
q−1) < 1, h(r∗) = 1

as well as h(2q−3
2q−2) > 1. Hence, we know that q−2

q−1 < r∗ <
2q−3
2q−2 .

D.4. Proof of Theorem 4

Recall that, we utilize the BFGS for solving the least-square loss function Ln in equation (15),
which is given by:

Ln(θ) :=
1

n

n∑
i=1

(
Yi − (X⊤

i θ)p
)2

=
1

n

n∑
i=1

Y 2
i − 2

n

n∑
i=1

Yi(X
⊤
i θ)p +

1

n

n∑
i=1

(X⊤
i θ)2p, (74)

where (Y1, X1), (Y2, X2), . . . , (Yn, Xn) that are i.i.d. samples from the following generalized linear
model with polynomial link function of power p:

Yi = (X⊤
i θ∗)p + ζi,

where ζi ∼ N (0, σ2). In this proof, we focus on the low SNR regime of the generalized linear
model, namely, θ∗ = 0.

Optimal solution θ∗n: For the case of d = 1, we study the optimal solution θ∗n of the least-square
loss function Ln. First of all, directly solving the gradient of the least-square loss function leads to
either θ∗n = 0 or the following form of θ∗n:

(θ∗n)
p =

∑n
i=1 YiX

p
i∑n

i=1X
2p
i

. (75)

To bound θ∗n, we only focus on bounding the later value of θ∗n in equation (75). Given the generative
model of the data, we have

n∑
i=1

YiX
p
i =

(
n∑

i=1

X2p
i

)
(θ∗)p +

n∑
i=1

ζiX
p
i .

Therefore, we obtain that

(θ∗n)
p = (θ∗)p +

∑n
i=1 ζiX

p
i∑n

i=1X
2p
i

.

We then consider 1
n

∑n
i=1 ζiX

p
i and 1

n

∑n
i=1X

2p
i separately. For the term 1

n

∑n
i=1 ζiX

p
i , note that,

for any even integer q, we have

E [(ζXp)q] = E [ζqXpq] ≤ (σ2q)q/2 · (pq)pq/2 ≤
(
max{σ2, p}q

)(p+1)q/2
.
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Invoking Lemma 2 in [27], we have that

P

[∣∣∣∣∣ 1n
n∑

i=1

ζiX
p
i

∣∣∣∣∣ ≥ (4max{σ2, p})(p+1)/2

√
log 4/δ

n
+
(
max{σ2, p} log n

δ

)(p+1)/2 log 4/δ

n

]
≤ δ.

For the term 1
n

∑n
i=1X

2p
i , applying Lemma 5 in [10], we have that

P

[∣∣∣∣∣ 1n
n∑

i=1

X2p
i − (2p− 1)!!

∣∣∣∣∣ ≥ Cp log
p(n/δ)√
n

]
≤ δ,

where Cp = Θ(p log p) is a constant depends only on p.
For the case θ∗ = 0 which corresponds to the low signal-to-noise regime, with simple algebra,

we know with probability at least 1− 2δ,

|θ∗n| ≤

(4max{σ2, p})(p+1)/2
√

log 4/δ
n +

(
max{σ2, p} log n

δ

)(p+1)/2 log 4/δ
n

(2p− 1)!!− Cp logp(n/δ)√
n

1/p

.

With Minkowski’s inequality, it indicates that as long as n ≥ Θ(max{σ2, p2 log2 p} log2p(n/δ)) for

some failure probability δ ∈ (0, 1) to make sure (4max{σ2, p})(p+1)/2
√

log 4/δ
n ≥

(
max{σ2, p} log n

δ

)(p+1)/2 log 4/δ
n

and Cp logp(n/δ)√
n

≤ 1, if |θ∗| ≤ C0σ
(
log2 p(n/δ)

n

)1/2p
, there exists constant C = Θ

(
(max{σ2,p})(p+1)/2p

p + C0σ
)

such that with probability 1− δ, we have |θ∗n| ≤ C
(
log2p(n/δ)

n

) 1
2p .

Statistical analysis of the BFGS: Without loss of generality, we assume that θ∗n takes the value
in equation (75) (the proof when θ∗n = 0 can be argued in the similar fashion). When we run the
BFGS for solving the least-square loss function Ln, its updates take the following form

θnk+1 = θnk −
θnk − θnk−1

∇L(θnk )−∇L(θnk−1)
∇L(θnk )

= θnk −
( 1n
∑n

i=1X
2p
i )(θnk )

2p−1 − ( 1n
∑n

i=1 YiX
p
i )(θ

n
k )

p−1

( 1n
∑n

i=1X
2p
i )(

∑2p−2
j=0 (θnk )

2p−2−j(θnk−1)
j)− ( 1n

∑n
i=1 YiX

p
i )(
∑p−2

j=0(θ
n
k )

p−2−j(θnk−1)
j)
.

Given the formulation of θ∗n in equation (75), we can rewrite the update of θnk+1 as follows:

θnk+1 = θnk −
(θnk−1 − θnk )(θ

n
k )

p−1((θnk )
p − (θ∗n)

p)

(θnk−1)
p−1((θnk−1)

p − (θ∗n)
p)− (θnk )

p−1((θnk )
p − (θ∗n)

p)
. (76)

Assume that |θnk | ≥ 2|θ∗n| for all 1 ≤ k ≤ T where T indicates the first iteration that the BFGS
iterates reach the statistical radius. Without loss of generality, we assume that the initializations
θn0 and θn1 of the BFGS satisfy θn0 > θn1 ≥ 2|θ∗n|, namely, these initializations are positive and lie
above the statistical radius (otherwise, the conclusion of the theorem trivially holds). Then, we will
first demonstrate by induction that 2|θ∗n| < θnk < θnk−1 for all 1 ≤ k ≤ T . Indeed, the induction
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hypothesis holds for any k ≤ 1 based on the conditions of the initializations; we now prove the
hypothesis for k + 1. From equation (76), we have

θnk+1 = θnk

(
1− An

Bn

)
,

where we define

An =(θnk−1 − θnk )(θ
n
k )

p−2((θnk )
p − (θ∗n)

p),

Bn =(θnk−1)
p−1((θnk−1)

p − (θ∗n)
p)− (θnk )

p−1((θnk )
p − (θ∗n)

p).

With the induction hypothesis, we can check that An > 0. Furthermore, direct computation shows
that

Bn ≥ ((θnk−1)
p−1 − (θnk )

p−1)((θnk )
p − (θ∗n)

p) ≥ 0.

Similarly, by taking the difference between An and Bn, we have

Bn −An = (θnk−1)
p−1((θnk−1)

p − (θ∗n)
p)− (θnk )

p−1((θnk )
p − (θ∗n)

p)− (θnk−1 − θnk )(θ
n
k )

p−2((θnk )
p − (θ∗n)

p)

≥((θnk−1)
p−1 − (θnk )

p−1 − (θnk−1 − θnk )(θ
n
k )

p−2)((θnk )
p − (θ∗n)

p)

=θnk−1((θ
n
k−1)

p−2 − (θnk )
p−2)((θnk )

p − (θ∗n)
p) ≥ 0.

Putting these results together, it indicates that 0 < An/Bn < 1; therefore, we have 0 < θnk+1 < θnk ,
which implies that the induction hypothesis holds for k + 1. As a consequence, we have 0 < θnk <
θnk−1 for all 0 ≤ k ≤ T .

Now, we divide our proof into two settings: θ∗n > 0 and θ∗n < 0.
Setting 1 — When θ∗n > 0: We will prove the following bound:

θnk+1 ≥
2p− 2

2p− 1
θnk . (77)

Indeed, the inequality (77) is equivalent to show that

An ≤ 1

2p− 1
Bn

Note that,

Bn

An
=

(θnk−1)
p−1

(θnk−1 − θnk )(θ
n
k )

p−2

(θnk−1)
p − (θ∗n)

p

(θnk )
p − (θ∗n)

p
−

θnk
θnk−1 − θnk

≥
θnk−1

θnk−1 − θnk

(
(θnk−1)

2p−2

(θnk )
2p−2

− 1

)

≥(2p− 1)
θnk−1

θnk
≥(2p− 1),
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where the first inequality is due to the fact that zp−xp

yp−xp monotonically increases with x for 0 < x <

y < z, the second inequality is due to the convexity of the function t2p−1 for t > 0 and the last one
is due to the fact that θnk−1 > θnk .

Now, we would like to demonstrate the linear convergence rate of the BFGS iterates {θnk} to the
optimal solution θ∗n:

|θnk+1 − θ∗n| ≤
(
1− 1

e(2p− 2)

)
|θnk − θ∗n|, (78)

for all 2 ≤ k ≤ T − 1. As θnk > |θ∗n| for all 2 ≤ k ≤ T , the result in equation (78) is equivalent to

(θnk+1 − θ∗n) ≤
(
1− 1

e(2p− 2)

)
(θnk − θ∗n), (79)

for all 2 ≤ k ≤ T − 1. From direct computation, we have

θnk+1 − θ∗n = (θnk − θ∗n)

·

(
1−

(θnk−1 − θnk )(θ
n
k )

p−1((θnk )
p − (θ∗n)

p)

(θnk − θ∗)((θnk−1)
p−1((θnk−1)

p − (θ∗n)
p)− (θnk )

p−1((θnk )
p − (θ∗n)

p))

)
.

As 0 < 2|θ∗n| < θnk < θnk−1, we have

θnk − θ∗n
θnk−1 − θnk

(
(θnk−1)

p−1((θnk−1)
p − (θ∗n)

p)

(θnk )
p−1((θnk )

p − (θ∗n)
p)

− 1

)

=
θnk − θ∗n
θnk−1 − θnk

·
(θnk−1)

2p−1 − (θkn)
2p−1 − ((θnk−1)

p−1 − (θnk )
p−1)(θ∗n)

p

(θnk )
p−1((θnk )

p − (θ∗n)
p)

≤
(θnk−1)

2p−1 − (θnk )
2p−1

(θnk−1 − θnk )(θ
n
k )

2p−2

≤(2p− 1)

(
θnk−1

θnk

)2p−2

≤(2p− 1)

(
1 +

1

2p− 2

)2p−2

≤e(2p− 1),

where we obtain the first inequality as the objective is monotonically decreasing with respect to θ∗n.
Hence, as long as 2 ≤ k ≤ T − 1 we find that

(θnk+1 − θ∗n) ≤
(
1− 1

e(2p− 1)

)
(θnk − θ∗n),

which shows the linear convergence of the BFGS iterates to the optimal solution.
By repeating the inequalities (79), we obtain that

|θnT − θ∗n| ≤
(
1− 1

e(2p− 1)

)T−1

|θn0 − θ∗n|. (80)

24



As long as we choose
(
1− 1

e(2p−1)

)T
|θn0 − θ∗n| ≤

(
log2p(n/δ)

n

)1/2p
, which is equivalently to

T ≥
log log(n/δ)− logn

2p − log(|θn0 − θ∗n|)

log
(
1− 1

e(2p−1)

) ,

which is satisfied according to the hypothesis. If this condition holds, then we obtain |θnT − θ∗n| ≤
|θ∗n|. Hence, for any k larger than the above threshold our result holds. A direct application of the
triangle inequality, we have

|θnT − θ∗| ≤ |θnT − θ∗n|+ |θ∗n| ≤
(
log2p(n/δ)

n

)1/2p

+ |θ∗n − θ∗|

≤
(
log2p(n/δ)

n

)
+ |θ∗n|+ |θ∗|

≤ (C̄σ + C + 1)

(
log2p(n/δ)

n

) 1
2p

(81)

with probability 1 − δ, where the final inequality is due to |θ∗n| ≤ C
(
log2p(n/δ)

n

) 1
2p and |θ∗| ≤

C̄σ
(
log2p(n/δ)

n

) 1
2p where C is the constant from the bound of θ∗n and C̄ is a constant from the

hypothesis of the low SNR regime. As a consequence, by choosing C1 = Θ(max{σ2, p2 log2 p})
and C2 = Θ

(
(max{σ2,p})(p+1)/2p

p + C0 + C̄σ
)

from the bound on θ∗n, we obtain the conclusion of
the theorem when θ∗n > 0.

Setting 2 — When θ∗n < 0: We would like to prove the following bound:

θnk+1 ≥
p

p+ 2
θnk . (82)

Indeed, the inequality (82) is equivalent to show that

Bn −An ≥ p

p+ 2
Bn.

In light of the previous calculations, this inequality is equivalent to

p−2∑
j=1

(θnk )
p−2−j(θnk−1)

j [(θnk )
p − (θ∗n)

p] +

2p−2∑
j=p−1

(θnk )
2p−2−j(θnk−1)

j

≥ p

p+ 2

p−2∑
j=0

(θnk )
p−2−j(θnk−1)

j [(θnk )
p − (θ∗n)

p] +

2p−2∑
j=p−1

(θnk )
2p−2−j(θnk−1)

j

 ,

which is equivalent to

2

p−2∑
j=1

(θnk )
p−2−j(θnk−1)

j [(θnk )
p − (θ∗n)

p] + 2

2p−2∑
j=p−1

(θnk )
2p−2−j(θnk−1)

j ≥ p(θnk )
p−2[(θnk )

p − (θ∗n)
p].

(83)
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Since
∑p−2

j=1(θ
n
k )

p−2−j(θnk−1)
j ≥ (p− 2)(θnk )

p−2 and θnk > 2|θ∗n| > 0, we have that

p−2∑
j=1

(θnk )
p−2−j(θnk−1)

j [(θnk )
p − (θ∗n)

p] ≥ (p− 2)(θnk )
p−2[(θnk )

p − (θ∗n)
p].

Furthermore, as −(θ∗n)
p < (θnk )

p/2p, we have (θnk )
p−2[(θnk )

p − (θ∗n)
p] < (1 + 2−p)(θnk )

2p−2. On
the other hand,

∑2p−2
j=p−1(θ

n
k )

2p−2−j(θnk−1)
j > p(θnk )

2p−2 ≥ (1+2−p)(θnk )
2p−2 > (θnk )

p−2[(θnk )
p−

(θ∗n)
p] as p ≥ 2. Putting these results together indicates that the bound (83) holds. Therefore, we

obtain the conclusion of the bound (83) and equivalently the bound (82).
Now, we would like to demonstrate the linear convergence rate of the BFGS iterates {θnk} to the

optimal solution θ∗n:

|θnk+1 − θ∗n| ≤

1−

(
1− 2

p+2

)2p−2

2p2 − p

 |θnk − θ∗n|, (84)

for all 2 ≤ k ≤ T − 1. As θnk > 2|θ∗n| for all 2 ≤ k ≤ T , the result in equation (84) is equivalent to

(θnk+1 − θ∗n) ≤

1−

(
1− 2

p+2

)2p−2

2p2 − p

 (θnk − θ∗n), (85)

for all 2 ≤ k ≤ T − 1. From direct computation, we have

θnk+1 − θ∗n = (θnk − θ∗n)

·

(
1−

(θnk )
p−1(

∑p−1
j=0(θ

n
k )

p−1−j(θ∗n)
j)

(
∑2p−2

j=0 (θnk )
2p−2−j(θnk−1)

j)− (
∑p−2

j=0(θ
n
k )

p−2−j(θnk−1)
j)(θ∗n)

p

)
.

As 0 < 2|θ∗n| < θnk < θnk−1, we have2p−2∑
j=0

(θnk )
2p−2−j(θnk−1)

j

−

p−2∑
j=0

(θnk )
p−2−j(θnk−1)

j

 (θ∗n)
p

=

p−2∑
j=0

(θnk )
p−2−j(θnk−1)

j [(θnk )
p − (θ∗n)

p] +

2p−2∑
j=p−1

(θnk )
2p−2−j(θnk−1)

j

=

p−2∑
j=0

(θnk )
p−2−j(θnk−1)

j

[
(θnk − θ∗n)

(
p−1∑
l=0

(θnk )
l(θ∗n)

p−1−l

)]
+

2p−2∑
j=p−1

(θnk )
2p−2−j(θnk−1)

j

≤p(p− 1)(θnk−1)
2p−3(θnk − θ∗n) + p(θnk−1)

2p−2

≤(2p2 − p)(θnk−1)
2p−2.

Meanwhile, when 2 ≤ k ≤ T we have that

(θnk )
p−1

p−1∑
j=0

(θnk )
p−1−j(θ∗n)

j

 ≥ (θnk )
2p−2 ≥

(
1− 2

p+ 2

)2p−2

(θnk−1)
2p−2.
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Putting the above results together, as long as 2 ≤ k ≤ T − 1 we find that

(θnk+1 − θ∗n) ≤

1−

(
1− 2

p+2

)2p−2

2p2 − p

 (θnk − θ∗n),

which shows the linear convergence of the BFGS iterates to the optimal solution.
By repeating the inequalities (85), we obtain that

|θnT − θ∗n| ≤

1−

(
1− 2

p+2

)2p−2

2p2 − p


T

|θn − θ∗n|.

As long as we choose

(
1−

(
1− 2

p+2

)2p−2

2p2−p

)T

(θn0 − θ∗n) ≤
(
log2p(n/δ)

n

)1/2p
, which is equiva-

lent to T ≥
log log(n/δ)− logn

2p
−log(|θn0−θ∗n|)

log

(
1−(

1− 2
p+2)

2p−2

2p2−p

) , then we obtain |θnT − θ∗n| ≤ |θ∗n|. It is satisfied as

T ≥
log log(n/δ)− logn

2p
−log(|θn0−θ∗n|)

log
(
1− 1

e(2p−1)

) >
log log(n/δ)− logn

2p
−log(|θn0−θ∗n|)

log

(
1−(

1− 2
p+2)

2p−2

2p2−p

) from the hypothesis. A direct

application of the triangle inequality, we have

|θnT−θ∗| ≤ |θnT−θ∗n|+|θ∗n−θ∗| ≤
(
log2p(n/δ)

n

)1/2p

+|θ∗n−θ∗| ≤ (C̄σ+C+1)

(
log2p(n/δ)

n

) 1
2p

with probability 1 − δ. Here, C is the constant from the bound of θ∗n and C̄ is a constant from the
hypothesis of the low SNR regime. As a consequence, by choosing C1 = Θ(max{σ2, p2 log2 p})
and C2 = Θ

(
(max{σ2,p})(p+1)/2p

p + C0 + C̄σ
)

from the bound on θ∗n, we obtain the conclusion of
the theorem when θ∗n < 0.

Appendix E. Additional Experiment Results

E.1. Statistical Radius with Error Bar

We additionally report the statistical radius with error bar, by sampling 40 different dataset with the
same generative model and report the median, the 25% percentile and 75% percentile. For low SNR
regime, BFGS still reach the statistical radius within O(n−1/4), while for high SNR regime, BFGS
reach the statistical radius within O(n−1/2).

E.1.1. EXPERIMENTS IN HIGH DIMENSION

To show that BFGS can also be applied to high dimension scenarios, we conduct additional exper-
iments on the generalized linear model with input d = 50 and the power of link function p = 2.
The inputs are generated by {Xi}ni=1 ∼ N (0, diag(σ2

1, ·, σ2
50)) where σk = (0.96)k−1, and the

remaining setting and hyper-parameters are set identical to the low dimension scenarios.
The results are shown in Figure 6. As ther results show, the performance of BFGS in high

dimensional scenarios are nearly identical to the low dimensional scenarios.
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Figure 5: Illustration of the statistical radius of BFGS with error bar. Left: Low SNR regime.
Right: High SNR regime.

E.1.2. EXPERIMENTS IN MIDDLE SNR REGIME

Here we briefly illustrate the behavior of BFGS in Middle SNR regime. We consider the generalized
linear model with d = 50 and p = 2. The inputs are still generated by {Xi}ni=1, but θ∗ now is
uniformly sampled from the sphere with radius n−1/6.

The results are shown in Figure 7. We can see BFGS still converges linearly, and the statistical
radius of middle SNR regime lies between the Hign SNR and Low SNR. A rigorous characterization
of the statistical radius of middle SNR regime will be left as future work.
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(c) High SNR regime.
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Figure 6: Convergence and Statistical Results in d = 50. Convergence of different methods for
high SNR regime are shown in (a) and low SNR regime in (b). Statistical radius of BFGS
in high SNR regime and low SNR regime are shown in (c) and (d) correspondingly.
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(a) Middle SNR regime.
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(b) Middle SNR regime.

Figure 7: Convergence and Statistical Results for Medium SNR in d = 50.

30


	Introduction
	BFGS algorithm
	Generalized linear model with polynomial link function
	Convergence analysis for the low signal-to-noise case
	Comparison with Newton's method
	Statistical rate of BFGS for solving the sample least-square loss
	Numerical experiments
	Proof of Lemmas and Theorems
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4

	Additional Experiment Results
	Statistical Radius with Error Bar
	Experiments in High Dimension
	Experiments in Middle SNR Regime



