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Abstract
We propose a fully stochastic trust-region sequential quadratic programming (TR-StoSQP) algo-
rithm to solve nonlinear optimization problems. The problems involve a stochastic objective and
deterministic equality constraints. Under the fully stochastic setup, we suppose that only a single
sample is generated in each iteration to estimate the objective gradient. Compared to the existing
line-search StoSQP schemes, our algorithm allows one to employ indefinite Hessian matrices for
SQP subproblems. The algorithm adaptively selects the radius of the trust region based on an input
sequence {βk}, the estimated KKT residual, and the estimated Lipschitz constants of the objective
gradients and constraint Jacobians. To address the infeasibility issue of trust-region methods that
arises in constrained optimization, we propose an adaptive relaxation technique to compute the trial
step. In particular, we decompose the trial step into a normal step and a tangential step. Based on
the ratios of the feasibility and optimality residuals to the full KKT residual, we decompose the
full trust-region radius into two segments that are used to control the size of the normal and tan-
gential steps, respectively. The normal step has a closed form, while the tangential step is solved
from a trust-region subproblem, of which the Cauchy point is sufficient for our study. We estab-
lish the global almost sure convergence guarantee of TR-StoSQP, and demonstrate its empirical
performance on a subset of problems in CUTEst test set.

1. Introduction

We consider the following constrained stochastic optimization problem

min
x∈Rd

f(x) = E[F (x; ξ)], s.t. c(x) = 0, (1)

where f : Rd → R is a stochastic objective with F (·; ξ) being one of its realizations, c : Rd → Rm

are deterministic equality constraints, and ξ ∼ P is a random variable following the distribution P .
Problem (1) appears in numerous applications, including deep neural networks [6], optimal control
[4], and PDE-constrained optimization [15].

There are various methods for solving constrained deterministic optimization problems, among
which sequential quadratic programming (SQP) methods enjoy superior performance in practice for
both small and large problems. The recent literature has focused on the design of different stochas-
tic SQP algorithms (StoSQP) to solve constrained stochastic optimization problems in (1) under
different problem setups. In the fully stochastic setup, where a single sample is generated in each
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iteration to estimate the objective gradient, [2] proposed an StoSQP algorithm in which a random
projection procedure is designed to select the stepsize. Inspired by the line search procedure, the
projection procedure constructs an interval in each iteration based on a prespecified sequence {βk}
and the estimated Lipschitz constants of the objective gradients and constraint Jacobians, projects
a random quantity onto the interval to decide the stepsize, and ensures that the projected stepsize
satisfies a model reduction condition on the ℓ1 merit function. Based on the design in [2], [1] de-
veloped a procedure that can handle rank-deficient Jacobians, [9] solved Newton systems inexactly,
and [3] applied SVRG techniques to accelerate the algorithm. In the random model setup, where a
batch of samples is generated in each iteration, [12] proposed an StoSQP algorithm that utilizes an
exact augmented Lagrangian merit function and incorporates a stochastic line search procedure to
select the stepsize. [11] further generalized the algorithm by allowing inequality constraints using
an active-set method.

The aforementioned existing algorithms provably converge globally either in expectation or al-
most surely and have satisfying numerical performance under suitable simulation settings. However,
they have three limitations. First, they are all line-search-based, that is, a search direction is first
computed by solving the SQP subproblem either exactly or inexactly, and then a stepsize is selected
either by a random projection or by stochastic line search. However, for deterministic problems it
is known that computing the search direction and stepsize jointly, such as in trust-region methods,
can result in a better performing procedure [13, Chapter 4]. Second, to make the SQP subproblems
solvable, the above literature requires the approximation of the Lagrangian Hessian to be positive
definite in the null space of constraint Jacobians. Such a condition is common in the SQP literature,
but is often achieved by Hessian modifications and excludes promising choices of the Hessian ma-
trix, such as the unperturbed Hessian at the current iterate. Third, to show the global convergence,
the above literature requires the merit parameter to be not only stabilized but at a sufficiently large
(or small, depending on the context) value with an unknown threshold. To achieve this goal, [11, 12]
imposed a condition on the feasibility error when selecting the merit parameter, while [1–3, 9] im-
posed a condition on the noise distribution. In principle, both resolutions are not necessary because
standard deterministic SQP schemes only require a stabilized merit parameter.

Motivated by the above limitations, we design a fully stochastic trust-region SQP method (TR-
StoSQP). As a trust-region method, TR-StoSQP computes the search direction and stepsize jointly
and has the ability to explore negative curvatures of the Hessian matrix. The fully stochastic trust-
region method for solving unconstrained problems was originally proposed in [8], where the authors
used a linear model of the objective. [7] generalized that method and used a quadratic model of the
objective. Our TR-StoSQP method is based on [7], however, the design is significantly different due
to the existence of constraints. In particular, we need to overcome the challenge that the SQP sub-
problem with trust-region constraints may not have a feasibility point. To address this issue, we
design a novel adaptive relaxation technique, where we decompose the trial step into a normal step
and a tangential step, and decompose the radius of the trust-region into two segments. The two seg-
ments, proportional to the ratios of the feasibility and optimality residuals to the full KKT residual,
are used to control the size of the normal and tangential steps, respectively. To our knowledge, this
is the first trust-region SQP algorithm for constrained problems in a fully stochastic setup. With a
stabilized merit parameter (not necessarily large or small enough), we establish the global conver-
gence of TR-StoSQP by showing that the KKT residual converges to zero almost surely. Numerical
experiments on a subset of problems in the CUTEst test set demonstrate the superior performance
of the proposed method.
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Notation We use ∥·∥ to denote the ℓ2 norm for vectors and the operator norm for matrices. The iden-
tity matrix is denoted as I and 0 denotes the zero matrix or vector. Let G(x) = ∇T c(x) ∈ Rm×d

be the Jacobian matrix of the constraints and P (x) = I −GT (x)[G(x)GT (x)]−1G(x) be the pro-
jection matrix onto the null space of G(x). We use ḡ(x) = ∇F (x; ξ) to denote an estimate of
∇f(x), and use (̄·) to denote stochastic estimates. We define the Lagrangian of (1) as L(x,λ) =
f(x) + λT c(x), and ∇L(x) is its gradient. At the k-th iteration, we let ḡk = ḡ(xk), Gk = G(xk),
∇̄xLk = ḡk +GT

kλk (a similar notation is used for ck, Pk,∇xLk,∇Lk, ∇̄Lk, etc.).

2. Adaptive Relaxation Technique

In this section, we introduce a novel adaptive relaxation technique to address the infeasibility issue
of trust-region methods for constrained optimization. We refer to [5, 14, 16] for some existing relax-
ation methods. We decompose a trial step into two orthogonal segments as ∆xk = wk + tk, where
wk ∈ im(GT

k ) is the normal step and tk ∈ ker(Gk) is the tangential step. To satisfy the linearized
constraints ck +Gk∆xk = 0, when Gk has full row rank, we have wk = −GT

k [GkG
T
k ]

−1ck =: vk.
However, the existence of trust-region constraint ∥∆xk∥ ≤ ∆k may prevent us from taking the en-
tire length of vk. Thus, we introduce a scalar γ̄k ∈ (0, 1] and let the normal step be wk = γ̄kvk. On
the other hand, the tangential step can always be written as tk = Pkuk for some vector uk ∈ Rd.
To correctly choose γk and adjust ∥uk∥ so that ∥∆xk∥ ≤ ∆k, we propose to adaptively decompose
the trust-region radius into two segments as

∆̆k =
∥ck∥

∥∇̄Lk∥
∆k and ∆̃k =

∥∇̄xLk∥
∥∇̄Lk∥

∆k,

which are trust-region radii of the normal and tangential step, respectively. Thus, we define γ̄k as

γ̄k = min{∆̆k/∥vk∥, 1}, (2)

and compute uk by solving the trust-region problem

min
u∈Rd

m(u) = ḡTk Pku+
1

2
uTPkBkPku s.t. ∥u∥ ≤ ∆̃k. (3)

When ∥vk∥ = 0, ∆xk = Pkuk and thus (2) is skipped. We mention that (3) is a standard trust-
region problem for unconstrained optimization, and its Cauchy point is sufficient for our analysis.

3. A Fully Stochastic Trust-Region SQP Algorithm

Given the iterate xk, user-specified parameters βk ∈ (0, βmax] with βmax > 0, ζ > 0, and the
merit parameter µ̄k−1 selected at the (k− 1)-th iteration, the TR-StoSQP algorithm proceeds in the
following three steps.

Step 1: Compute parameters. We obtain Bk to approximate the Lagrangian Hessian ∇2
xLk that is

deterministic conditional on xk. Then we compute the parameters: η1,k = ζmin{1/∥Bk∥, 6βmax/∥Gk∥},
τk = L∇f,k +LG,kµ̄k−1 + ∥Bk∥, αk = βk/(4η1,kτkβmax +6ζβmax), and η2,k = η1,k − 1

2ζη1,kαk,
where L∇f,k, LG,k > 0 are (estimated) Lipschitz constants of ∇f(x) and G(x) at xk.

Step 2: Compute trust-region radius. We generate a realization ξkg and compute ḡk = ∇F (xk; ξ
k
g ).

We further compute the Lagrangian multiplier λ̄k = −[GkG
T
k ]

−1Gkḡk, ∇̄xLk and ∇̄Lk. Given the
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parameters computed in Step 1, the trust-region radius ∆k is generated as:

∆k =


η1,kαk∥∇̄Lk∥ if ∥∇̄Lk∥ ∈ (0, 1/η1,k),

αk if ∥∇̄Lk∥ ∈ [1/η1,k, 1/η2,k],

η2,kαk∥∇̄Lk∥ if ∥∇̄Lk∥ ∈ (1/η2,k,∞).

Step 3: Compute the trial step and update the merit parameter. We compute the trial step ∆xk as
introduced in Section 2 and update the iterate as xk+1 = xk + ∆xk. We also select the merit pa-
rameter µ̄k large enough such that

Predk ≤ −∥∇̄xLk∥∆̃k −
1

2
∥ck∥∆̆k +

1

2
∥Bk∥∆̃2

k + ∥Bk∥∆̆k∆̃k, (4)

with the predicted reduction Predk = ḡTk ∆xk +
1
2∆xT

kBk∆xk + µ̄k(∥ck +Gk∆xk∥ − ∥ck∥).
In what follows, we present assumptions and state the main global convergence results.

Assumption 1 Let Ω ⊆ Rd be an open convex set containing the iterates {xk}. The function f(x)
is continuously differentiable and is bounded below by finf over Ω. The gradient ∇f(x) is Lipschitz
continuous over Ω with constant L∇f > 0, so that the (estimated) Lipschitz constant L∇f,k at xk

satisfies L∇f,k ≤ L∇f , ∀k ≥ 0. Similarly, the constraint c(x) is continuously differentiable over Ω;
its Jacobian G(x) is Lipschitz continuous over Ω with constant LG > 0; and LG,k ≤ LG, ∀k ≥ 0.
We also assume there exist positive constants κB, κc, κ∇f , κ1,G, κ2,G > 0 such that

∥Bk∥ ≤ κB, ∥ck∥ ≤ κc, ∥∇fk∥ ≤ κ∇f , κ1,G · I ⪯ GkG
T
k ⪯ κ2,G · I, ∀k ≥ 0.

Assumption 2 (Growth condition) For k ∈ N, we have E[ḡk | xk] = ∇fk and E[∥∇fk − ḡk∥2 |
xk] ≤ Mg +Mg,1(fk − finf) for constants Mg ≥ 1,Mg,1 ≥ 0.

Assumption 3 (Stabilization of merit parameter) There exist a stochastic K̄ < ∞ and a deter-
ministic constant µ̂, such that for ∀k > K̄, µ̄k = µ̄K̄ ≤ µ̂.

Assumption 1 is standard in the existing literature [2]. Assumption 2 is weaker than the com-
monly used bounded variance condition. Assumption 3 assumes that the merit parameter µ̄k stabi-
lizes for large k, which can be provably satisfied under a boundedness condition on ḡk. See detailed
proofs in Appendix B. We also only provide a convergence guarantee for the case where βk is a
decaying sequence. Proof can be found in Appendix A.2.

Theorem 4 (Global convergence with constant βk) Suppose Assumptions 1–3 hold and βk =
β ∈ (0, βmax] for ∀k ≥ 0, then

lim
K→∞

E

 1∑K̄+K
k=K̄+1

wk

K̄+K∑
k=K̄+1

wk∥∇Lk∥2
 ≤ Υ{Mg,1E[LK̄+1

µ̄K̄
− finf ] +Mg}β,

where wk,Υ are derived from the analysis.

Theorem 5 (Global convergence with decaying βk) Suppose Assumptions 1–3 hold and βk ∈
(0, βmax] satisfies

∑∞
k=0 βk = ∞ and

∑∞
k=0 β

2
k < ∞, then limk→∞ ∥∇Lk∥ = 0 almost surely.

Theorems 4 and 5 establish the global convergence properties for TR-StoSQP. Compared with
the conclusion for unconstrained problems in [7], the radius of neighborhood in Theorem 4 is pro-
portional to β. The conclusion of Theorem 5 matches the result in [7], but under weaker assumption
that the variance of gradient estimates satisfies the growth condition.
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(a) βk = 0.5 (b) βk = 1.0

(c) βk = k−0.6 (d) βk = k−0.8

Figure 1: KKT residual boxplots of CUTEst datasets.

4. Numerical Experiments

We demonstrate the empirical performance of TR-StoSQP on a subset of equality constrained prob-
lems in CUTEst test set [10]. We compare TR-StoSQP with the ℓ1-StoSQP algorithm [2, Algorithm
3]. We try two constants βk ∈ {0.5, 1} and two decaying sequences βk ∈ {k−0.6, k−0.8}. For each
βk, we draw ḡk from N (∇fk, σ

2(I +11T )), where 1 denotes the d-dimensional all one vector. For
the noise level σ2, we try four values in {10−8, 10−4, 10−2, 10−1}. For ℓ1-StoSQP, we let Bk = I
(as used in [2]). For TR-StoSQP, we try four Hessian approximates: the identity matrix (Id), the
symmetric rank-one (SR1) update, the estimated Hessian (EstH), and the averaged Hessian (AveH).
When EstH and AveH are employed, we draw the (i, j) (also (j, i)) entry of the estimate of ∇2fk
from N ((∇2fk)i,j , σ

2) with identical σ2 for estimating the gradient. We draw the boxplots of the
KKT residuals of ℓ1-StoSQP and TR-StoSQP in Figure 1.

From Figure 1, we observe that TR-StoSQP consistently outperforms ℓ1-StoSQP for constant βk
and decaying βk with large noise levels. However, for decaying βk with small noise levels, ℓ1-
StoSQP generally performs better. Moreover, for decaying βk, TR-StoSQP is more robust to dif-
ferent noise levels. Among the four choices of the Hessian approximates, TR-StoSQP generally
performs the best with the averaged Hessian and second best with the estimated Hessian, especially
when the noise level is high.

5



FULLY STOCHASTIC TRUST-REGION SEQUENTIAL QUADRATIC PROGRAMMING

5. Conclusion

We proposed a fully stochastic trust-region SQP (TR-StoSQP) algorithm for solving equality-constrained
problems. We developed a novel adaptive relaxation technique to relax the linearized constraints and
decompose the trust-region radius adaptively to control the size of normal and tangential steps. We
established the global almost sure convergence guarantee and demonstrated the superior perfor-
mance of TR-StoSQP on a subset of problems in CUTEst collection set.
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Appendix A. Proofs

A.1. Fundamental lemmas

Lemma 6 Suppose uk is solved (approximately) from (3) and achieved at least Cauchy reduction,
then for all k ∈ N, we have

m(uk)−m(0) = ḡTk Pkuk +
1

2
uT
k PkBkPkuk ≤ −∥Pkḡk∥∆̃k +

1

2
∥Bk∥∆̃2

k.

Proof Since uk achieves at least Cauchy reduction in m(u), we only need to analyze the reduction
achieved by the Cauchy point uC

k , denoted as m(uC
k )−m(0). From Lemma 4.3 of [13], one finds

that the Cauchy point uC
k lies in the interior of the trust region if ∥Pkḡk∥3 ≤ ∆̃kḡ

T
k PkBkPkḡk, and

lies on the boundary otherwise. If the Cauchy point lies in the interior, we have

uC
k = − ∥Pkḡk∥2

ḡTk PkBkPkḡk
Pkḡk,

noting that P 2
k = Pk, we find

m(uC
k )−m(0) = ḡTk Pku

C
k +

1

2
uCT
k PkBkPku

C
k = −1

2

∥Pkḡk∥4

ḡTk PkBkPkḡk
≤ −1

2

∥Pkḡk∥2

∥Bk∥
.

And if the Cauchy point lies on the boundary, it is given by

uC
k = − ∆̃k

∥Pkḡk∥
Pkḡk.

We similarly have

m(uC
k )−m(0) =ḡTk Pku

C
k +

1

2
uCT
k PkBkPku

C
k

=− ∥Pkḡk∥∆̃k +
1

2

ḡTk PkBkPkḡk
∥Pkḡk∥2

∆̃2
k

≤− ∥Pkḡk∥∆̃k +
1

2
∥Bk∥∆̃2

k.

Combining the above two cases, one finds

m(uC
k )−m(0) = ḡTk Pku

C
k +

1

2
uCT
k PkBkPku

C
k ≤ −min

{
∥Pkḡk∥∆̃k −

1

2
∥Bk∥∆̃2

k,
1

2

∥Pkḡk∥2

∥Bk∥

}
.

Noting that ∥Pkḡk∥∆̃k− 1
2∥Bk∥∆̃2

k ≤ 1
2
∥Pk ḡk∥2
∥Bk∥ always holds and m(uk)−m(0) ≤ m(uC

k )−m(0),
we complete the proof.

Lemma 7 Suppose Assumptions 1 and 3 hold, then for all k ≥ K̄ + 1, we have

Lk+1
µ̄K̄

− Lk
µ̄K̄

≤− ∥∇̄xLk∥∆̃k −
1

2
∥ck∥∆̆k +

1

2
∥Bk∥∆̃2

k + ∥Bk∥∆̆k∆̃k + γk(∇fk − ḡk)
Tvk

+ ∥Pk(∇fk − ḡk)∥∆̃k +
1

2
τk∆

2
k. (5)

8



FULLY STOCHASTIC TRUST-REGION SEQUENTIAL QUADRATIC PROGRAMMING

Proof From the definitions of Lµ̄K̄
(x) and Predk, we have

Lk+1
µ̄K̄

− Lk
µ̄K̄

− Predk =fk+1 − fk − ḡTk ∆xk −
1

2
∆xT

kBk∆xk + µ̄K̄(∥ck+1∥ − ∥ck +Gk∆xk∥)

≤(∇fk − ḡk)
T∆xk +

1

2
(L∇f,k + ∥Bk∥+ LG,kµ̄K̄)∥∆xk∥2,

in the inequality, we use Taylor expansion and Lipschitz continuity of ∇f(x) and G(x). Since the
merit parameter stabilizes, we have L∇f,k + ∥Bk∥+ LG,kµ̄K̄ = τk. By ∆xk = γkvk + Pkuk, we
further have

Lk+1
µ̄K̄

− Lk
µ̄K̄

− Predk ≤γk(∇fk − ḡk)
Tvk + (∇fk − ḡk)

TPkuk +
1

2
τk∥∆xk∥2

=γk(∇fk − ḡk)
Tvk + (∇fk − ḡk)

TPkPkuk +
1

2
τk∥∆xk∥2

≤γk(∇fk − ḡk)
Tvk + ∥Pk(∇fk − ḡk)∥∥Pkuk∥+

1

2
τk∥∆xk∥2, (6)

in the equality, we use the fact that P 2
k = Pk and in the last inequality, we use Cauchy-Schwartz

inequality. The result follows from the combination of (4) and (6) and facts that ∥Pkuk∥ ≤
∆̃k, ∥∆xk∥ ≤ ∆k.

Lemma 8 Suppose Assumptions 1 and 2 hold, then for all k ∈ N, we have

Ek[γk(∇fk − ḡk)
Tvk] ≤

1

2
ζη1,kκcα

2
kEk[∥∇fk − ḡk∥].

Proof When vk = 0, the inequality holds trivially. Now we consider vk ̸= 0. It is implied by the
computation of vk that ck = −Gkvk, which leads to ∥ck∥ = ∥Gkvk∥ ≤ ∥Gk∥∥vk∥, equivalently,
∥vk∥ ≥ ∥ck∥/∥Gk∥. From the definitions of η1,k and αk, it is easy to check that η1,kαk ≤ 1

∥Gk∥ .

Since ∆̆k ≤ η1,kαk∥ck∥ for all k ∈ N, we have

∆̆k ≤ ∥ck∥
∥Gk∥

≤ ∥vk∥.

Therefore, from (2) we have

γk∥vk∥ = min
{
∆̆k, ∥vk∥

}
= ∆̆k, (7)

which is equivalent to γk = ∆̆k/∥vk∥. Since η2,kαk∥ck∥ ≤ ∆̆k ≤ η1,kαk∥ck∥ holds for all k ∈ N,
we have

γk,min := η2,kαk
∥ck∥
∥vk∥

≤ γk ≤ η1,kαk
∥ck∥
∥vk∥

=: γk,max, (8)

where both γk,min and γk,max are deterministic conditioned on xk. Let Ek be the event that (∇fk −
ḡk)

Tvk ≥ 0, Ec
k be its complement and Pk[·] denote the probability conditioned on xk. By the law

of total expectation, we have

Ek[γk(∇fk − ḡk)
Tvk]

=Ek[γk(∇fk − ḡk)
Tvk|Ek]Pk[Ek] + Ek[γk(∇fk − ḡk)

Tvk|Ec
k]Pk[E

c
k]

(8)
≤γk,maxEk[(∇fk − ḡk)

Tvk|Ek]Pk[Ek] + γk,minEk[(∇fk − ḡk)
Tvk|Ec

k]Pk[E
c
k].

9
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Since ḡk is an unbiased estimator of ∇fk, it follows from the equality above and the law of total
expectation that

Ek[γk(∇fk − ḡk)
Tvk]

≤γk,minEk[(∇fk − ḡk)
Tvk|Ek]Pk[Ek] + γk,minEk[(∇fk − ḡk)

Tvk|Ec
k]Pk[E

c
k]

+ (γk,max − γk,min)Ek[(∇fk − ḡk)
Tvk|Ek]Pk[Ek]

=(γk,max − γk,min)Ek[(∇fk − ḡk)
Tvk|Ek]Pk[Ek]. (9)

By Cauchy-Schwarz inequality and the law of total expectation, we have

Ek[(∇fk − ḡk)
Tvk|Ek]Pk[Ek] ≤Ek[∥∇fk − ḡk∥∥vk∥|Ek]Pk[Ek]

=Ek[∥∇fk − ḡk∥∥vk∥]− Ek[∥∇fk − ḡk∥∥vk∥|Ec
k]Pk[E

c
k]

≤∥vk∥Ek[∥∇fk − ḡk∥]. (10)

Combining (9) and (10), we have

Ek[γk(∇fk − ḡk)
Tvk] ≤(γk,max − γk,min)∥vk∥Ek[∥∇fk − ḡk∥]

(8)
≤ (η1,k − η2,k)αk∥ck∥Ek[∥∇fk − ḡk∥]

=
1

2
ζη1,kκcα

2
kEk[∥∇fk − ḡk∥].

In the last inequality we use the relation η1,k − η2,k = 1
2ζη1,kαk and ∥ck∥ ≤ κc. We complete the

proof.

Lemma 9 Suppose Assumptions 1, 2, and 3 hold, then for all k ≥ K̄ + 1, we have

Ek[Lk+1
µ̄K̄

] ≤Lk
µ̄K̄

− 1

4
η2,kαk∥∇Lk∥2 +

1

2
(2ζ + η1,k(τk + ∥Bk∥)) η1,kα2

kEk[∥∇fk − ḡk∥2]

+
1

2
ζη1,kκcα

2
kEk[∥∇fk − ḡk∥].

Proof We divide the proof into three cases according to (3).
Case 1. ∥∇̄Lk∥ ∈ (0, 1/η1,k). Since ∆̃k = η1,kαk∥∇̄xLk∥, for all k ≥ K̄ + 1, we have

−∥∇̄xLk∥∆̃k +
1

2
∥Bk∥∆̃2

k =− η1,kαk∥∇̄xLk∥2 +
1

2
η21,kα

2
k∥∇̄xLk∥2∥Bk∥

≤ − η1,kαk∥∇̄xLk∥2 +
1

2
ζη1,kα

2
k∥∇̄xLk∥2

=−
(
1− 1

2
αkζ

)
η1,kαk∥∇̄xLk∥2. (11)

10
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By the definition of αk, it is easy to check that αk < 2
ζ , hence we always have 1 − 1

2αkζ > 0. It

follows from ∆k = η1,kαk∥∇̄Lk∥, ∆̆k = η1,kαk∥ck∥, ∆̃k = η1,kαk∥∇̄xLk∥ that

Lk+1
µ̄K̄

− Lk
µ̄K̄

(5)
≤ − ∥∇̄xLk∥∆̃k −

1

2
∥ck∥∆̆k +

1

2
∥Bk∥∆̃2

k + ∥Bk∥∆̆k∆̃k + γk(∇fk − ḡk)
Tvk

+ ∥Pk(∇fk − ḡk)∥∆̃k +
1

2
τk∆

2
k

(11)
≤ −

(
1− 1

2
αkζ

)
η1,kαk∥∇̄xLk∥2 −

1

2
η1,kαk∥ck∥2 + η21,kα

2
k∥Bk∥∥∇̄xLk∥∥ck∥

+ γk(∇fk − ḡk)
Tvk + η1,kαk∥Pk(∇fk − ḡk)∥∥∇̄xLk∥+

1

2
τkη

2
1,kα

2
k∥∇̄Lk∥2.

Noting that ab ≤ a2/2 + b2/2 and ∥∇̄Lk∥2 = ∥∇̄xLk∥2 + ∥ck∥2, we have

Lk+1
µ̄K̄

− Lk
µ̄K̄

≤−
(
1− 1

2
αkζ

)
η1,kαk∥∇̄xLk∥2 −

1

2
η1,kαk∥ck∥2 +

1

2
η21,kα

2
k∥Bk∥

(
∥∇̄xLk∥2 + ∥ck∥2

)
+ γk(∇fk − ḡk)

Tvk +
1

2
η1,kαk

(
∥Pk(∇fk − ḡk)∥2 + ∥∇̄xLk∥2

)
+

1

2
η21,kα

2
kτk

(
∥∇̄xLk∥2 + ∥ck∥2

)
=− 1

2
(1− αkζ) η1,kαk∥∇̄xLk∥2 −

1

2
η1,kαk∥ck∥2 +

1

2
η21,kα

2
k∥Bk∥∥∇̄xLk∥2

+
1

2
η21,kα

2
k∥Bk∥∥ck∥2 + γk(∇fk − ḡk)

Tvk +
1

2
η1,kαk∥Pk(∇fk − ḡk)∥2

+
1

2
η21,kα

2
kτk∥∇̄xLk∥2 +

1

2
η21,kα

2
kτk∥ck∥2. (12)

Since η1,kαk ≤ 1
4τk

≤ 1
4∥Bk∥ , we have 1

2η
2
1,kα

2
k∥Bk∥∥ck∥2 + 1

2η
2
1,kα

2
kτk∥ck∥2 ≤ 1

4η1,kαk∥ck∥2.
Rearranging terms of (12), we have

Lk+1
µ̄K̄

− Lk
µ̄K̄

≤− 1

2
(1− αkζ − η1,kαkτk − η1,kαk∥Bk∥) η1,kαk∥∇̄xLk∥2 −

1

4
η1,kαk∥ck∥2

+ γk(∇fk − ḡk)
Tvk +

1

2
η1,kαk∥Pk(∇fk − ḡk)∥2. (13)

Taking expectation conditional on xk on both sides of (13), using the conclusion of Lemma 8 and
the relation Ek[∥Pk(∇fk − ḡk)∥2] = Ek[∥∇̄xLk∥2]− ∥∇xLk∥2 twice, we have

Ek[Lk+1
µ̄K̄

]− Lk
µ̄K̄

≤− 1

2
(1− αkζ − η1,kαkτk − η1,kαk∥Bk∥) η1,kαkEk[∥∇̄xLk∥2]−

1

4
η1,kαk∥ck∥2

+
1

2
ζη1,kκcα

2
kEk[∥∇fk − ḡk∥] +

1

2
η1,kαk

(
Ek[∥∇̄xLk∥2]− ∥∇xLk∥2

)
=− 1

2
η1,kαk∥∇xLk∥2 +

1

2
(ζ + η1,k(τk + ∥Bk∥)) η1,kα2

kEk[∥∇̄xLk∥2]

− 1

4
η1,kαk∥ck∥2 +

1

2
ζη1,kκcα

2
kEk[∥∇fk − ḡk∥]

11
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=− 1

2
η1,kαk∥∇xLk∥2 −

1

4
η1,kαk∥ck∥2 +

1

2
ζη1,kκcα

2
kEk[∥∇fk − ḡk∥]

+
1

2
(ζ + η1,k(τk + ∥Bk∥)) η1,kα2

k

(
Ek[∥Pk(∇fk − ḡk)∥2] + ∥∇xLk∥2

)
=− 1

2
(1− αkζ − η1,kαk(τk + ∥Bk∥)) η1,kαk∥∇xLk∥2 +

1

2
ζη1,kκcα

2
kEk[∥∇fk − ḡk∥]

− 1

4
η1,kαk∥ck∥2 +

1

2
(ζ + η1,k(τk + ∥Bk∥)) η1,kα2

kEk[∥Pk(∇fk − ḡk)∥2].

Since βk ≤ 1 holds for all k ∈ N, we have αk = βk
4η1,kτk+6ζ ≤ 1

2η1,kτk+4ζ . Meanwhile, η1,k∥Bk∥ ≤
ζ leads to

αk ≤ 1

2(ζ + η1,k(τk + ∥Bk∥))
. (14)

Rearranging the terms, we have αkζ + η1,kαk(τk + ∥Bk∥) ≤ 1/2, hence

Ek[Lk+1
µ̄K̄

]− Lk
µ̄K̄

≤− 1

4
η1,kαk∥∇xLk∥2 −

1

4
η1,kαk∥ck∥2 +

1

2
ζη1,kκcα

2
kEk[∥∇fk − ḡk∥]

+
1

2
(ζ + η1,k(τk + ∥Bk∥)) η1,kα2

kEk[∥Pk(∇fk − ḡk)∥2]

=− 1

4
η1,kαk∥∇Lk∥2 +

1

2
ζη1,kκcα

2
kEk[∥∇fk − ḡk∥]

+
1

2
(ζ + η1,k(τk + ∥Bk∥)) η1,kα2

kEk[∥Pk(∇fk − ḡk)∥2],

in the last equality, we use ∥∇xLk∥2 + ∥ck∥2 = ∥∇Lk∥2.
Case 2. ∥∇̄Lk∥ ∈ [1/η1,k, 1/η2,k]. Since ∆̃k = αk

∥∇̄xLk∥
∥∇̄Lk∥

, we have

−∥∇̄xLk∥∆̃k +
1

2
∥Bk∥∆̃2

k =− αk
∥∇̄xLk∥2

∥∇̄Lk∥
+ α2

k

∥Bk∥∥∇̄xLk∥2

2∥∇̄Lk∥2

≤− αk
∥∇̄xLk∥2

∥∇̄Lk∥
+ α2

k

ζ∥∇̄xLk∥2

2η1,k∥∇̄Lk∥2

≤−
(
1− 1

2
αkζ

)
αk

∥∇̄xLk∥2

∥∇̄Lk∥

≤ −
(
1− 1

2
αkζ

)
η2,kαk∥∇̄xLk∥2, (15)

in the last inequality, we also use the fact that 1 − 1
2αkζ > 0. Meanwhile, it follows from ∆̆k =

αk
∥ck∥

∥∇̄Lk∥
and η2,k∥∇̄Lk∥ ≤ 1 that

−1

2
∥ck∥∆̆k = −αk

2

∥ck∥2

∥∇̄Lk∥
≤ −1

2
η2,kαk∥ck∥2. (16)

12
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Since ∆k = αk, ∆̆k = αk
∥ck∥

∥∇̄Lk∥
and ∆̃k = αk

∥∇̄xLk∥
∥∇̄Lk∥

we have

Lk+1
µ̄K̄

− Lk
µ̄K̄

(5)
≤ − ∥∇̄xLk∥∆̃k −

1

2
∥ck∥∆̆k +

1

2
∥Bk∥∆̃2

k + ∥Bk∥∆̆k∆̃k + γk(∇fk − ḡk)
Tvk

+ ∥Pk(∇fk − ḡk)∥∆̃k +
1

2
τk∆

2
k

(15),(16)
≤ −

(
1− 1

2
αkζ

)
η2,kαk∥∇̄xLk∥2 −

1

2
η2,kαk∥ck∥2 + α2

k

∥∇̄xLk∥∥Bk∥∥ck∥
∥∇̄Lk∥2

+ γk(∇fk − ḡk)
Tvk + αk

∥Pk(∇fk − ḡk)∥∥∇̄xLk∥
∥∇̄Lk∥

+
1

2
τkα

2
k

≤−
(
1− 1

2
αkζ

)
η2,kαk∥∇̄xLk∥2 −

1

2
η2,kαk∥ck∥2 + η21,kα

2
k∥Bk∥∥∇̄xLk∥∥ck∥

+ γk(∇fk − ḡk)
Tvk + η1,kαk∥Pk(∇fk − ḡk)∥∥∇̄xLk∥+

1

2
τkη

2
1,kα

2
k∥∇̄Lk∥2,

in the last inequality, we use η1,k∥∇̄Lk∥ ≥ 1. Using similar derivation as (12), we have

Lk+1
µ̄K̄

− Lk
µ̄K̄

≤−
(
1− 1

2
αkζ

)
η2,kαk∥∇̄xLk∥2 −

1

2
η2,kαk∥ck∥2

+
1

2
η21,kα

2
k∥Bk∥

(
∥∇̄xLk∥2 + ∥ck∥2

)
+ γk(∇fk − ḡk)

Tvk

+
1

2
η1,kαk

(
∥Pk(∇fk − ḡk)∥2 + ∥∇̄xLk∥2

)
+

1

2
τkη

2
1,kα

2
k

(
∥∇̄xLk∥2 + ∥ck∥2

)
. (17)

Since βk ≤ 1 holds for all k ∈ N, we have αk = βk
4η1,kτk+6ζ = 2βk

8η1,kτk+12ζ ≤ 2
8η1,kτk+ζ . Rearrang-

ing the terms, it follows that

η1,kαkτk ≤ 1

4
− 1

8
ζαk ⇒ η21,kαkτk ≤ 1

4
η1,k −

1

8
η1,kζαk =

1

4
η2,k,

which leads to η21,kα
2
kτk ≤ 1

4η2,kαk. Since τk ≥ ∥Bk∥, we also have η21,kα
2
k∥Bk∥ ≤ 1

4η2,kαk,
hence

1

2
η21,kα

2
k∥Bk∥∥ck∥2 +

1

2
η21,kα

2
kτk∥ck∥2 ≤

1

4
η2,kαk∥ck∥2. (18)

Rearranging terms in (17), we have

Lk+1
µ̄K̄

− Lk
µ̄K̄

(18)
≤ −

((
1− 1

2
αkζ

)
η2,k −

1

2
η1,k −

1

2
αkη

2
1,k(τk + ∥Bk∥)

)
αk∥∇̄xLk∥2

− 1

4
η2,kαk∥ck∥2 + γk(∇fk − ḡk)

Tvk +
1

2
η1,kαk∥Pk(∇fk − ḡk)∥2.

13
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Taking expectation conditional on Fk−1 on both sides, using the conclusion of Lemma 8 and the
relation Ek[∥Pk(∇fk − ḡk)∥2] = Ek[∥∇̄xLk∥2]− ∥∇xLk∥2 twice, we have

Ek[Lk+1
µ̄K̄

]− Lk
µ̄K̄

≤−
((

1− 1

2
αkζ

)
η2,k −

1

2
η1,k −

1

2
αkη

2
1,k(τk + ∥Bk∥)

)
αkEk[∥∇̄xLk∥2]−

1

4
η2,kαk∥ck∥2

+
1

2
η1,kαk(Ek[∥∇̄xLk∥2]− ∥∇xLk∥2) +

1

2
ζη1,kκcα

2
kEk[∥∇fk − ḡk∥]

=− 1

2
η1,kαk∥∇xLk∥2 +

(
η1,k − η2,k +

1

2

(
η2,kζ + η21,k(τk + ∥Bk∥)

)
αk

)
αkEk[∥∇̄xLk∥2]

− 1

4
η2,kαk∥ck∥2 +

1

2
ζη1,kκcα

2
kEk[∥∇fk − ḡk∥]

=

(
η1,k − η2,k +

1

2

(
η2,kζ + η21,k(τk + ∥Bk∥)

)
αk

)
αk(Ek[∥Pk(∇fk − ḡk)∥2] + ∥∇xLk∥2)

− 1

2
η1,kαk∥∇xLk∥2 −

1

4
η2,kαk∥ck∥2 +

1

2
ζη1,kκcα

2
kEk[∥∇fk − ḡk∥]

=−
(
1

2
η1,k − (η1,k − η2,k)−

1

2

(
η2,kζ + η21,k(τk + ∥Bk∥)

)
αk

)
αk∥∇xLk∥2

+

(
η1,k − η2,k +

1

2

(
η2,kζ + η21,k(τk + ∥Bk∥)

)
αk

)
αkEk[∥Pk(∇fk − ḡk)∥2]

− 1

4
η2,kαk∥ck∥2 +

1

2
ζη1,kκcα

2
kEk[∥∇fk − ḡk∥].

Substituting η2,k with η1,k − 1
2ζη1,kαk, we then have

Ek[Lk+1
µ̄K̄

]− Lk
µ̄K̄

≤−
(
1

2
− αkζ +

1

4
ζ2α2

k −
1

2
η1,k(τk + ∥Bk∥)αk

)
η1,kαk∥∇xLk∥2

+
1

2

(
2ζ − 1

2
ζ2αk + η1,k(τk + ∥Bk∥)

)
η1,kα

2
kEk[∥Pk(∇fk − ḡk)∥2]

− 1

4
η2,kαk∥ck∥2 +

1

2
ζη1,kκcα

2
kEk[∥∇fk − ḡk∥].

Since βk ≤ 1 and ∥Bk∥ ≤ τk, we have αk = βk
4η1,kτk+6ζ = 2βk

8η1,kτk+12ζ ≤ 2
4η1,k(τk+∥Bk∥)+7ζ .

Rearranging the terms, we have

1

4
− 1

2
η1,kαk(τk + ∥Bk∥) ≥

7

8
αkζ

⇒ 1

4
η1,k − η1,kαkζ −

1

2
η21,kαk(τk + ∥Bk∥) ≥ −1

8
η1,kαkζ

⇒ 1

4
η1,k − η1,kαkζ −

1

2
η21,kαk(τk + ∥Bk∥) ≥ −1

4
(η1,k − η2,k).

14
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Rearranging the terms, we have
(
1
2 − αkζ +

1
4ζ

2α2
k −

1
2η1,k(τk + ∥Bk∥)αk

)
η1,k ≥ 1

4η2,k. Hence,

Ek[Lk+1
µ̄K̄

]− Lk
µ̄K̄

≤− 1

4
η2,kαk∥∇xLk∥2 −

1

4
η2,kαk∥ck∥2 +

1

2
ζη1,kκcα

2
kEk[∥∇fk − ḡk∥]

+
1

2

(
2ζ − 1

2
ζ2αk + η1,k(τk + ∥Bk∥)

)
η1,kα

2
kEk[∥Pk(∇fk − ḡk)∥2]

≤− 1

4
η2,kαk∥∇Lk∥2 +

1

2
(2ζ + η1,k(τk + ∥Bk∥)) η1,kα2

kEk[∥Pk(∇fk − ḡk)∥2]

+
1

2
ζη1,kκcα

2
kEk[∥∇fk − ḡk∥],

in the last equality, we use ∥∇xLk∥2 + ∥ck∥2 = ∥∇Lk∥2.
Case 3. ∥∇̄Lk∥ ∈ (1/η2,k,∞). It follows from ∆̃k = η2,kαk∥∇̄xLk∥ that for all k ≥ K̄ + 1,

−∥∇̄xLk∥∆̃k +
1

2
∥Bk∥∆̃2

k =− η2,kαk∥∇̄xLk∥2 +
1

2
η22,kα

2
k∥∇̄xLk∥2∥Bk∥

≤ − η2,kαk∥∇̄xLk∥2 +
1

2
ζη2,kα

2
k∥∇̄xLk∥2

=−
(
1− 1

2
αkζ

)
η2,kαk∥∇̄xLk∥2. (19)

Combining ∆k = η2,kαk∥∇̄Lk∥, ∆̆k = η2,kαk∥ck∥, ∆̃k = η2,kαk∥∇̄xLk∥ with (19), we have

Lk+1
µ̄K̄

− Lk
µ̄K̄

(5)
≤ − ∥∇̄xLk∥∆̃k −

1

2
∥ck∥∆̆k +

1

2
∥Bk∥∆̃2

k + ∥Bk∥∆̆k∆̃k + γk(∇fk − ḡk)
Tvk

+ ∥Pk(∇fk − ḡk)∥∆̃k +
1

2
τk∆

2
k

≤−
(
1− 1

2
αkζ

)
η2,kαk∥∇̄xLk∥2 −

1

2
η2,kαk∥ck∥2 + γk(∇fk − ḡk)

Tvk

+ η2,kαk∥Pk(∇fk − ḡk)∥∥∇̄xLk∥+ η22,kα
2
k∥Bk∥∥∇̄xLk∥∥ck∥+

1

2
η22,kα

2
kτk∥∇̄Lk∥2.

Using similar derivation as (12), we have

Lk+1
µ̄K̄

− Lk
µ̄K̄

≤−
(
1− 1

2
αkζ

)
η2,kαk∥∇̄xLk∥2 −

1

2
η2,kαk∥ck∥2 + γk(∇fk − ḡk)

Tvk

+
1

2
η2,kαk

(
∥Pk(∇fk − ḡk)∥2 + ∥∇̄xLk∥2

)
+

1

2
η22,kα

2
k∥Bk∥

(
∥∇̄xLk∥2 + ∥ck∥2

)
+

1

2
η22,kα

2
kτk

(
∥∇̄xLk∥2 + ∥ck∥2

)
=− 1

2
(1− αkζ) η2,kαk∥∇̄xLk∥2 −

1

2
η2,kαk∥ck∥2 + γk(∇fk − ḡk)

Tvk

+
1

2
η2,kαk∥Pk(∇fk − ḡk)∥2 +

1

2
η22,kα

2
k∥Bk∥∥∇̄xLk∥2

+
1

2
η22,kα

2
k∥Bk∥∥ck∥2 +

1

2
η22,kα

2
kτk∥∇̄xLk∥2 +

1

2
τkη

2
2,kα

∥
kck∥

2 (20)
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Since η2,kαk ≤ η1,kαk ≤ 1
4τk

≤ 1
4∥Bk∥ , one finds 1

2η
2
2,kα

2
k∥Bk∥∥ck∥2 + 1

2η
2
2,kα

2
kτk∥ck∥2 ≤

1
4η2,kαk∥ck∥2. It then follows from (20) that

Lk+1
µ̄K̄

− Lk
µ̄K̄

≤− 1

2
(1− αkζ − η2,kαkτk − η2,kαk∥Bk∥) η2,kαk∥∇̄xLk∥2 −

1

4
η2,kαk∥ck∥2

+ γk(∇fk − ḡk)
Tvk +

1

2
η2,kαk∥Pk(∇fk − ḡk)∥2. (21)

Taking expectation conditional on Fk−1 on both sides of (21), using the conclusion of Lemma 8
and the relation Ek[∥Pk(∇fk − ḡk)∥2] = Ek[∥∇̄xLk∥2]− ∥∇xLk∥2 twice, we have

Ek[Lk+1
µ̄K̄

]− Lk
µ̄K̄

≤− 1

2
(1− αkζ − η2,kαkτk − η2,kαk∥Bk∥) η2,kαkEk[∥∇̄xLk∥2]−

1

4
η2,kαk∥ck∥2

+
1

2
η2,kαk

(
Ek[∥∇̄xLk∥2]− ∥∇xLk∥2

)
+

1

2
ζη1,kκcα

2
kEk[∥∇fk − ḡk∥]

=− 1

2
η2,kαk∥∇xLk∥2 +

1

2
(ζ + η2,k(τk + ∥Bk∥)) η2,kα2

kEk[∥∇̄xLk∥2]−
1

4
η2,kαk∥ck∥2

+
1

2
ζη1,kκcα

2
kEk[∥∇fk − ḡk∥]

=− 1

2
η2,kαk∥∇xLk∥2 −

1

4
η2,kαk∥ck∥2 +

1

2
ζη1,kκcα

2
kEk[∥∇fk − ḡk∥]

+
1

2
(ζ + η2,k(τk + ∥Bk∥)) η2,kα2

k

(
Ek[∥Pk(∇fk − ḡk)∥2] + ∥∇xLk∥2

)
=− 1

2
(1− αkζ − η2,kαk(τk + ∥Bk∥)) η2,kαk∥∇xLk∥2 −

1

4
η2,kαk∥ck∥2

+
1

2
(ζ + η2,k(τk + ∥Bk∥)) η2,kα2

kEk[∥Pk(∇fk − ḡk)∥2] +
1

2
ζη1,kκcα

2
kEk[∥∇fk − ḡk∥].

Using similar derivation as (14), since η2,k ≤ η1,k, we have ζαk + η2,kαk(τk + ∥Bk∥) ≤ 1
2 , hence

Ek[Lk+1
µ̄K̄

]− Lk
µ̄K̄

≤− 1

4
η2,kαk∥∇xLk∥2 −

1

4
η2,kαk∥ck∥2 +

1

2
(ζ + η2,k(τk + ∥Bk∥)) η2,kα2

kEk[∥Pk(∇fk − ḡk)∥2]

+
1

2
ζη1,kκcα

2
kEk[∥∇fk − ḡk∥]

=− 1

4
η2,kαk∥∇Lk∥2 +

1

2
(ζ + η2,k(τk + ∥Bk∥)) η2,kα2

kEk[∥Pk(∇fk − ḡk)∥2]

+
1

2
ζη1,kκcα

2
kEk[∥∇fk − ḡk∥],

in the last equality, we use ∥∇xLk∥2 + ∥ck∥2 = ∥∇Lk∥2 again. The conclusion follows from
combining three cases and noting that Ek[∥Pk(∇fk − ḡk)∥2] ≤ Ek[∥∇fk − ḡk∥2].

Lemma 10 Suppose Assumptions 1 and 3 hold, then for all k ∈ N, we have:
(a) There exist positive parameters ηmin, ηmax ∈ R such that ηmin ≤ η2,k ≤ η1,k ≤ ηmax.
(b) There exists positive parameter τmax ∈ R such that τk ≤ τmax.
(c) There exist positive parameters αl, αu ∈ R such that αk ∈ [αlβk, αuβk].
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Proof (a) To show that ηmin exists, we find that since η1,k and τk are both non-negative, αk =
βk

4η1,kτk+6ζ ≤ βk
6ζ holds for all k ∈ N, which leads to η2,k = η1,k

(
1− 1

2ζαk

)
≥ η1,k

(
1− 1

12βk
)
.

Noticing that βk ≤ 1 and η1,k ≥ ζmin
{
1/κB, 6/

√
κ2,G

}
, we have η2,k ≥ 11

12ζmin
{

1
κB

, 6√
κ2,G

}
:=

ηmin > 0. Since η2,k = η1,k− 1
2ζη1,kαk, it is straightforward that η2,k ≤ η1,k. The existence of ηmax

follows from η1,k = ζmin
{

1
∥Bk∥ ,

6
∥Gk∥

}
and ∥Gk∥ ≥ √

κ1,G, which leads to η1,k ≤ 6ζ/
√
κ1,G :=

ηmax. (b) From Assumption 1, we have that for all k ∈ N, L∇f,k ≤ L∇f , LG,k ≤ LG and ∥Bk∥ ≤
κB . Since µ̄k ≤ µ̂ for all k ∈ N, we have τk = L∇f,k +LG,kµ̄k−1+ ∥Bk∥ ≤ L∇f +LGµ̂+κB :=

τmax. (c) Since αk = βk/(4η1,kτk + 6ζ), we have αlβk := βk
4ηmaxτmax+6ζ ≤ αk ≤ βk

6ζ =: αuβk.

A.2. Proof of Theorem 5

Proof Using the conclusion of Lemma 9 and Assumption 2, we have

Ek[Lk+1
µ̄K̄

] ≤Lk
µ̄K̄

− 1

4
η2,kαk∥∇Lk∥2 +

1

2
ζη1,kκcα

2
k

√
Mg +Mg,1(fk − finf)

+
1

2
(2ζ + η1,k(τk + ∥Bk∥)) η1,kα2

k[Mg +Mg,1(fk − finf)].

Since Mg ≥ 1, we have
√
Mg +Mg,1(fk − finf) ≤ Mg+Mg,1(fk−finf). Conclusions of Lemma

10 further lead to

Ek

[
Lk+1
µ̄K̄

]
≤Lk

µ̄K̄
− 1

4
ηminαlβ∥∇Lk∥2 +Υ1β

2[Mg +Mg,1(fk − finf)],

where Υ1 := 1
2 (2ζ + ηmax(τmax + κB) + ζκc) ηmaxα

2
u. Due to the relation that fk − finf ≤ fk −

finf + ∥ck∥ = Lk
µ̄K̄

, we have

Ek

[
Lk+1
µ̄K̄

]
≤
(
1 + Υ1Mg,1β

2
k

)
Lk
µ̄K̄

− 1

4
ηminαlβk∥∇Lk∥2 +Υ1Mgβ

2
k, (22)

where Υ1 := 1
2 (2ζ + ηmax(τmax + κB) + ζκc) ηmaxα

2
u. Taking total expectation on both sides of

(22), since
∑∞

k=K̄+1 β
2
k < ∞, it follows from Robbins-Siegmund theorem that

sup
k≥K̄+1

E[Lk
µ̄K̄

] < ∞, (23a)

E

 ∞∑
k=K̄+1

βk∥∇Lk∥2
 < ∞, (23b)

thus the first result in (??) holds. Since
∑∞

k=0 βk = ∞ and K̄ is finite, one finds
∑∞

k=K̄+1 βk = ∞.

Thus from (23b) we find that if dividing E
[∑k=K̄+K

k=K̄+1
βk∥∇Lk∥2

]
by

∑k=K̄+K
k=K̄+1

βk and letting
K → ∞, we have the second result in (??). Moreover, by Fubini’s theorem, (23b) implies

∞∑
k=K̄+1

βk∥∇Lk∥2 < ∞ (24)
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with probability 1, which combined with
∑∞

k=K̄+1 βk = ∞ yields lim infk→∞ ∥∇Lk∥2 = 0 almost
surely. Next, we prove limk→∞ ∥∇Lk∥ = 0 almost surely. Suppose that limk→∞ ∥∇Lk∥ = 0
almost surely does not hold, then with some probability, there exists ϵ > 0 and an infinite index
set K1 ⊆ N such that ∥∇Lk∥ > 2ϵ for all k ∈ K1. On the other hand, we already show that with
probability 1, there exists an infinite index set K2 such that ∥∇Lk∥ ≤ ϵ for all k ∈ K2. They imply
that with some nonzero probability, there are index sets {mi} ⊂ N and {ni} ⊂ N with mi < ni for
all i ∈ N such that

∥∇Lmi∥ ≥ 2ϵ, ∥∇Lni∥ < ϵ, and ∥∇Lk∥ ≥ ϵ for all k ∈ {mi + 1, · · · , ni − 1}. (25)

Thus, one finds

∞
(24)
>

∞∑
k=K̄+1

βk∥∇Lk∥2 ≥
∞∑
i=0

ni−1∑
k=mi

βk∥∇Lk∥2
(25)
≥ ϵ2

∞∑
i=0

ni−1∑
k=mi

βk with probability 1,

which means that

lim
i→∞

ni−1∑
k=mi

βk = 0 with probability 1. (26)

Note that ∥∇̄Lk∥ ≤ ∥∇̄xLk∥ + ∥ck∥ = ∥Pkḡk∥ + ∥ck∥ ≤ ∥∇fk∥ + ∥∇fk − ḡk∥ + ∥ck∥, so
Assumptions 1 and 2 imply Ek[∥∇̄Lk∥] ≤ κ∇f+κc+

√
Mg +Mg,1(fk − finf) ≤ κ∇f+κc+Mg+

Mg,1(fk−finf). Therefore, from Ek [∥xk+1 − xk∥] = Ek [∥∆xk∥] ≤ Ek[∆k] ≤ η1,kαkEk[∥∇̄Lk∥]
we have

Ek [∥xk+1 − xk∥] ≤ ηmaxαuβk [κ∇f + κc +Mg +Mg,1(fk − finf)] . (27)

Taking total expectation on (27), we have

E [∥xk+1 − xk∥] ≤ηmaxαuβk [κ∇f + κc +Mg +Mg,1E [fk − finf ]]

≤ηmaxαuβk

[
κ∇f + κc +Mg +Mg,1 sup

k≥K̄+1

E
[
Lk
µ̄K̄

]]
.

In the last inequality, we use the relation that E[fk − finf ] ≤ E
[
Lk
µ̄K̄

]
≤ supk≥K̄+1 E

[
Lk
µ̄K̄

]
.

Taking summation over mi to ni − 1, we get

E[∥xni − xmi∥] ≤ ηmaxαu

[
κ∇f + κc +Mg +Mg,1 sup

k≥K̄+1

E
[
Lk
µ̄K̄

]] ni−1∑
k=mi

βk. (28)

Combining (23a), (26) and (28), we have limi→∞ ∥xni − xmi∥ = 0 with probability 1. From
Assumption 1, we find that ∇L(x,λ) is Lipschitz continuous in both x and λ. Since λk =
−[GkG

T
k ]

−1Gk∇fk, Assumption 1 implies that λ is also Lipschitz in x, so there exists a constant
L∇L > 0 such that ∥∇Lni − ∇Lmi∥ ≤ L∇L∥xni − xmi∥. We thus have 0 ≤ limi→∞ ∥∇Lni −
∇Lmi∥ ≤ limi→∞ L∇L∥xni − xmi∥ = 0 with probability 1. This yields contradiction to (25).
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Appendix B. Merit parameter behavior

Assumption 11 For all k ∈ N, there exists positive constant M1 ∈ R such that ∥∇fk− ḡk∥ ≤ M1.

Lemma 12 Suppose Assumptions 1 and 11 hold, then there exist a stochastic K̄ < ∞ and a
deterministic constant µ̂, such that µ̄k = µ̄K̄ ≤ µ̂ for ∀k > K̄, meaning that the merit parameter
stabilizes after finite iterations.

Proof To show the merit parameter stabilizes, it suffices to show that if µ̄k is larger than a determin-
istic threshold independent to k, (4) is always satisfied. From the definition of Predk, we have

Predk =ḡTk ∆xk +
1

2
∆xT

kBk∆xk + µ̄k(∥ck +Gk∆xk∥ − ∥ck∥)

=ḡTk Pkuk +
1

2
uT
k PkBkPkuk + γk(ḡk −∇fk)

Tvk + γk∇fT
k vk + γkv

T
kBkPkuk

+
1

2
γ2kv

T
kBkvk − µ̄kγk∥ck∥

≤ḡTk Pkuk +
1

2
uT
k PkBkPkuk −

1

2
γk∥vk∥∥ck∥+

1

2
γk∥vk∥∥ck∥+ γk∥ḡk −∇fk∥∥vk∥

+ γk∥∇fk∥∥vk∥+ ∥Bk∥∥γkvk∥∥Pkuk∥+
1

2
∥Bk∥∥γkvk∥2 − µ̄kγk∥ck∥,

in the last inequality, we use Cauchy-Schwartz inequality. Using Assumptions 1 and 11, noting that
∥vk∥ ≤ ∥GT

k [GkG
T
k ]

−1∥∥ck∥ ≤ ∥ck∥/
√
κ1,G, γk ≤ 1, ∥γkvk∥ ≤ ∆̆k and ∥Pkuk∥ ≤ ∆̃k, we have

Predk ≤ḡTk Pkuk +
1

2
uT
k PkBkPkuk −

1

2
γk∥vk∥∥ck∥+ γk

κc
2
√
κ1,G

∥ck∥+ γk
M1√
κ1,G

∥ck∥

+ γk
κ∇f√
κ1,G

∥ck∥+ ∥Bk∥∆̆k∆̃k + γk
κcκB
2κ1,G

∥ck∥ − µ̄kγk∥ck∥

=ḡTk Pkuk +
1

2
uT
k PkBkPkuk −

1

2
γk∥vk∥∥ck∥+ ∥Bk∥∆̆k∆̃k

+ γk

(
κc + 2M1 + 2κ∇f

2
√
κ1,G

+
κcκB
2κ1,G

− µ̄k

)
∥ck∥.

Therefore, if

µ̄k ≥
κc + 2M1 + 2κ∇f

2
√
κ1,G

+
κcκB
2κ1,G

:= µ̂/ρ,

one finds

Predk ≤ḡTk Pkuk +
1

2
uT
k PkBkPkuk −

1

2
γk∥vk∥∥ck∥+ ∥Bk∥∆̆k∆̃k. (29)

The conclusion follows by combining the result of Lemma 6, (7), (29), and Pkḡk = ∇̄xLk.
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