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Abstract
We consider optimization problems with a stochastic objective and deterministic constraints, and de-
sign a trust-region sequential quadratic programming (TR-SQP) method to solve them. We name
our method TR-SQP for STochastic Optimization with Random Models (TR-SQP-STORM). In each
iteration, our algorithm constructs a random model for the objective that satisfies suitable accuracy
conditions with a high but fixed probability. The algorithm decides whether a trial step is successful
or not based on two ratios: the ratio between the estimated actual reduction and predicted reduc-
tion on the ℓ2 merit function, and the ratio between the estimated KKT residual and trust-region
radius. For each successful step, the algorithm increases the trust-region radius, and further decides
whether the step is reliable or not based on the amount of the predicted reduction. If the step is reli-
able, then the algorithm relaxes the accuracy conditions for the next iteration. To resolve the infea-
sibility issue of trust-region methods for constrained problems, we employ an adaptive relaxation
technique proposed by a companion paper. Under reasonable assumptions, we establish the global
first-order convergence guarantee: the KKT residual converges to zero almost surely. We apply our
method on a subset of problems in CUTEst set to demonstrate its empirical performance.

1. Introduction

We consider solving the following constrained stochastic optimization problem

min
x∈Rd

f(x) = E[F (x; ξ)], s.t. c(x) = 0, (1)

where f : Rd → R is a stochastic objective, F (·; ξ) : Rd → R is a realization, c : Rd → Rm are de-
terministic equality constraints, and ξ ∼ P is a random variable following the distribution P . Prob-
lems of this form are popular in various scientific and engineering fields, including optimal control
[5], constrained deep neural networks [7], and reinforcement learning [1].

Numerous methods have been proposed for solving constrained optimization problems, such as
penalty methods, augmented Lagrangian methods, and sequential quadratic programming (SQP)
methods. All of these methods have advantages that make them suitable for different settings. Our
paper focuses on solving (1) with a stochastic SQP (StoSQP) method. [3] proposed the first StoSQP
algorithm, in which a single sample is obtained in each step to estimate the objective model and a
projection procedure is used to select the stepsize. Based on the ℓ1 merit function, that projection pro-
cedure uses a deterministic user-specified sequence {βk} to construct a projection interval in each
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step and determine the stepsize. The projection procedure adds adaptivity to the method compared
to algorithms that require users to directly specify stepsizes. However, since the projection interval
boundaries scale as βk with the length scaling as β2

k , the prespecified sequence {βk} still highly af-
fects the magnitude of the selected stepsize, and thus affects the performance of the algorithm. To
address this issue, [12] considered a random model setup and incorporated a stochastic line search
procedure with StoSQP. In each step, a model of the objective is constructed that satisfies suitable
accuracy conditions with a high but fixed probability. This model is used to compute an augmented
Lagrangian merit function, and the stepsize is selected by checking the Armijo condition. Several
papers built upon [3] and [12], and have further improved the design from different points of view.
[2] designed a scheme to deal with rank-deficient Jacobians; [9] allowed approximately solving the
SQP subproblems; [4] applied the SVRG technique inside StoSQP for finite-sum problems; and [11]
generalized the study in [12] by developing an active-set method to enable inequality constraints.

We contribute to the above literature by proposing the first trust-region StoSQP method for
stochastic optimization with random models, which we term TR-SQP-STORM.1 Under the random
model setup [8, 11, 12], we assume in each iteration that the objective model is accurately estimated
with a high but fixed probability, which can be achieved by using a batch of samples with adaptively
selected batch sizes. In each iteration of TR-SQP-STORM, we decide the trial step as successful or
not based on (1) the ratio between the estimated actual reduction and predicted reduction on the ℓ2
merit function, and (2) the ratio between the estimated KKT residual and the trust-region radius. The
former ratio is used for deterministic trust-region methods [13, Chapter 4], while the latter ratio is
inspired by [8] and is particularly used for stochastic optimization. If the trial step is successful, then
the trust-region radius is increased, otherwise, it is decreased. Unlike [8], for each successful trial
step, the algorithm further decides whether the step is reliable or not based on the amount of the pre-
dicted reduction. When the predicted reduction is large, we relax some model accuracy conditions
(e.g., the variance of the objective function estimate) for the next iteration. In addition, when design-
ing trust-region methods for constrained optimization, we have to resolve an infeasibility issue—the
intersection of linearized constraints and trust-region constraint may lead to an empty feasible set for
SQP subproblems. In this regard, we employ an adaptive relaxation technique proposed in a com-
panion paper. Specifically, we relax the linearized constraints by controlling the sizes of the normal
step and the tangential step separately, and the control radii are computed by splitting the full trust-
region radius into two parts. With the above extensions of the STORM method for unconstrained
optimization [8], our TR-SQP-STORM method enjoys three advantages over existing line-search-
based StoSQP methods [11, 12].

First, our method computes the search direction and selects the stepsize jointly, which can lead
to a better performance in some cases [13, Chapter 4]. This property is in contrast to the line-search-
based procedure, where a search direction is computed first and then the setpsize is decided based on
either line search procedure or projection techniques. Second, due to the trust-region constraint, the
SQP subproblems are well defined even with an indefinite Lagrangian Hessian approximate. Thus,
we can employ the unperturbed Hessian estimate at the current iterate to form the SQP subproblem.
On the contrary, existing StoSQP schemes all require a positive definite Hessian approximate in the
null space of linearized constraints, so a Hessian perturbation procedure is generally needed. Third,
in addition to ensuring that the search direction is a descent direction, [11, 12] imposed an extra fea-

1. The name STORM is borrowed from [8], where the authors designed a trust-region method for unconstrained stochas-
tic optimization with random models (STORM).
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sibility error condition when selecting the merit parameters. This condition is completely eliminated
in our study.

With the above differences to existing StoSQP methods, we establish the first-order convergence
guarantee of TR-SQP-STORM by showing that the KKT residual converges to zero almost surely.
We note that a recent work [6] designed a second-order STORM method for unconstrained problems
that converges to a strict local minimum. Motivated by that, we will also report on our second-order
stationarity results for constrained problems shortly. We apply the method on a subset of problems in
CUTEst test set to demonstrate its empirical performance.

Notation. We use ∥ ·∥ to denote the ℓ2 norm for vectors and the operator norm for matrices. We use
I to denote the identity matrix and 0 to denote the zero matrix, whose dimensions can be inferred
from the context. We let G(x) = ∇T c(x) ∈ Rm×d be the Jacobian matrix of the constraints and
let P (x) = I − GT (x)[G(x)GT (x)]−1G(x) be a projection matrix. We let ḡ(x) = ∇F (x; ξ) be
a realized objective gradient, and by (̄·) we denote all stochastic estimates. The Lagrangian of (1)
is defined as L(x,λ) = f(x) +λT c(x). At the k-th iteration, we let ḡk = ḡ(xk) and Gk = G(xk)
(similar notation is used for ck, Pk,∇Lk, ∇̄Lk, etc.).

2. Adaptive Relaxation Technique

We describe an adaptive relaxation technique proposed in a companion paper. This technique is used
to address the infeasibility issue of trust-region methods for constrained optimization: the intersec-
tion of {∆xk ∈ Rd : ck + Gk∆xk = 0} and {∆xk ∈ Rd : ∥∆xk∥ ≤ ∆k} can be empty, where
∆k is the given trust-region radius. To resolve this problem, we decompose the trial step ∆xk into
a normal step and a tangential step as ∆xk = wk + tk, where wk ∈ im(GT

k ) is the normal step
and tk ∈ ker(Gk) is the tangential step. We further write tk = Pkuk for some vector uk ∈ Rd.
Without the trust-region constraint ∥∆xk∥ ≤ ∆k, we know that wk = −GT

k [GkG
T
k ]

−1ck =: vk

(suppose Gk has full row rank). However, the trust-region constraint may prevent us from taking
the full length of vk. Thus, we let wk = γ̄kvk for a scalar γ̄k ∈ (0, 1]. Finally, we have ∆xk =
γ̄kvk +Pkuk. To select proper γ̄k and uk, we decompose the trust-region radius into two segments

∆̆k =
∥ck∥

∥∇̄Lk∥
∆k and ∆̃k =

∥∇̄xLk∥
∥∇̄Lk∥

∆k. (2)

Then, we let γ̄k = min{∆̆k/∥vk∥, 1}, and let uk be solved by a standard trust-region problem

min
u∈Rd

ḡTk Pku+
1

2
uTPkBkPku s.t. ∥u∥ ≤ ∆̃k. (3)

Any approximate solution of the problem (3) that achieves a fraction κfcd ∈ (0, 1] of the objective
reduction achieved by the Cauchy point is sufficient for our analysis.

3. TR-SQP-STORM

Let η, pg, pf ∈ (0, 1), ∆max, κg > 0, κf = κfcdη
3/16, γ > 1 be input parameters. Given the

current triple (xk,∆k, ϵ̄k), where xk is the (primal) iterate, ∆k is the trust-region radius, and ϵ̄k is
the reliability parameter, we perform the following four steps.

3



TRUST-REGION SQP-STORM: FIRST-ORDER STATIONARITY

Step 1. We use a batch of samples to obtain the gradient estimate ḡk that satisfies

P(Ak | xk) ≥ pg, with Ak = {∥∇fk − ḡk∥ ≤ κg∆k} .

Step 2. We compute the dual iterate λ̄k = −[GkG
T
k ]

−1Gkḡk, and the gradients ∇̄xLk and ∇̄Lk.
For a matrix Bk that approximates the Lagrangian Hessian ∇2

xLk, we compute the step ∆xk as in
Section 2. Based on ∆xk, we select the merit parameter µ̄k that is large enough so that

Predk ≤ −
κfcd
2

∥∇̄xLk∥min

{
∆̃k,

∥∇̄xLk∥
∥Bk∥

}
−

κfcd
2

∥ck∥min

{
∆̆k,

∥ck∥
∥Gk∥

}
, (4)

where κfcd is defined in Section 2 and the estimated predicted reduction is defined as

Predk = ḡTk ∆xk +
1

2
∆xT

kBk∆xk + µ̄k(∥ck +Gk∆xk∥ − ∥ck∥).

Step 3. Let xsk := xk +∆xk. We estimate f̄k, f̄sk , the objective values at xk, xsk , that satisfy

P(Bk | xk,∆xk) ≥ pf , max
{
E
[
|fk − f̄k| | xk,∆xk

]
,E

[
|fsk − f̄sk | | xk,∆xk

]}
≤ ϵ̄2k,

where Bk =
{
max(|fk − f̄k|, |fsk − f̄sk |) ≤ κf∆

2
k

}
. The estimated actual reduction Aredk =

L̄sk
µ̄k

− L̄k
µ̄k

is computed based on the ℓ2 merit function:

L̄sk
µ̄k

:= L̄µ̄k
(xsk) = f̄sk + µ̄k∥csk∥ and L̄k

µ̄k
:= L̄µ̄k

(xk) = f̄k + µ̄k∥ck∥.

Step 4. We update the triple (xk,∆k, ϵ̄k). Let ρ̄1 = Aredk/Predk and ρ̄2 = ∥∇̄Lk∥/∆k. If

ρ̄1 ≥ η and ρ̄2 ≥ η ·max{∥Bk∥, ∥Gk∥, 1}, (5)

then the trial step ∆xk is successful, and we update the iterate and radius as xk+1 = xsk and ∆k+1 =
min{γ∆k,∆max}. Furthermore, if −Predk ≥ ϵ̄k also holds, then ∆xk is a reliable step, and we
set ϵ̄k+1 = γϵ̄k to relax the variance of the objective estimate for the next iteration; otherwise, we
let ϵ̄k+1 = ϵ̄k/γ. If either condition of (5) does not hold, then ∆xk is an unsuccessful step. We let
xk+1 = xk, ∆k+1 = ∆k/γ, and ϵ̄k+1 = ϵ̄k/γ.

The following assumptions are used to establish the global convergence guarantee.

Assumption 1 The iterates xk,xsk lie in some open convex set Ω. The function f(x) is contin-
uously differentiable and bounded below by finf . The gradient ∇f(x) is Lipschitz continuous on
Ω with constant L∇f . The constraints c(x) are continuously differentiable. The Jacobian matrix
G(x) is Lipschitz continuous on Ω with constant LG. We also assume that there exist constants
κB ≥ 1, κc, κ∇f , κ1,G, κ2,G > 0 such that

∥Bk∥ ≤ κB, ∥ck∥ ≤ κc, ∥∇fk∥ ≤ κ∇f , κ1,G · I ⪯ GkG
T
k ⪯ κ2,G · I for all k ∈ N.

Assumption 2 (Stabilization of the merit parameter) There exist a stochastic K̄ < ∞ and a
deterministic constant µ̂, such that for ∀k > K̄, µ̄k = µ̄K̄ ≤ µ̂.
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Assumption 1 is standard in the existing literature [3]. Assumption 2 holds if ḡk satisfies a bound-
edness condition; detailed analysis can be found in Appendix B. Now we establish the global conver-
gence guarantee of TR-SQP-STORM. The proof is deferred to Appendix A.2. We use the following
potential function

Φk
µ̄K̄

= νLk
µ̄K̄

+
1− ν

2
∆2

k +
1− ν

2
ϵ̄k,

where Lk
µ̄K̄

= fk + µ̄K̄∥ck∥, and ν ∈ (0, 1) is a deterministic parameter satisfying ν
1−ν ≥

max
{

γ2

Υ , 2γη

}
for constants Υ derived in the analysis.

Theorem 3 Suppose that Assumptions 1, 2 hold, ν satisfies the above condition, and pf , pgrad are
large enough so that pgpf ≥ 1

2 and pf ≥ 1− (1−ν)(γ−1)
4νγ . Then limk→∞ ∥∇Lk∥ = 0 a.s.

Theorem 3 establishes the global convergence result for TR-SQP-STORM, which matches the
conclusion in [8] for trust-region methods for unconstrained problems.

4. Numerical Experiments

We demonstrate the empirical performance of TR-SQP-STORM on a subset of problems in CUTEst
set [10]. We compare our method with the ℓ2-StoSQP [12, Algorithm 3]. Given a noise level σ2

within {10−8, 10−4, 10−2, 10−1}, we draw estimates of fk from the Gaussian distribution N (fk, σ
2)

and estimates of ∇fk from N (∇fk, σ
2(I + 11T )), where 1 ∈ Rd denotes the all one vector. Both

algorithms adaptively select sample sizes to satisfy respective conditions. For ℓ2-StoSQP, we let
Bk = I (as used in [12]). For our method, we try four Hessian approximations: the identity matrix
(Id), the symmetric rank-one (SR1) update, the estimated Hessian (EstH), and the averaged Hessian
(AveH). When employing EstH and AveH, we estimate ∇2fk with only one sample per iteration.
The (i, j) (together with (j, i)) entry of the estimate of ∇2fk is drawn from N ((∇2fk)i,j , σ

2),
where σ2 is the same as for estimating the objective model. We draw boxplots for the optimality
residual ∥∇xL∥ and the feasibility residual ∥c(x)∥ of both methods in Figure 1.

(a) Optimality residual (b) Feasibility residual

Figure 1: KKT residual boxplots of CUTEst problem set.

From Figure 1, we observe that TR-SQP-STORM generally outperforms ℓ2-StoSQP for the op-
timality residual (especially when the noise level is high), while the two methods are comparable
for the feasibility residual. Among the four choices of Hessian approximates, the averaged Hessian
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consistently performs the best, and the current estimated Hessian is in the second place. This obser-
vation is consistent with our intuition.

5. Conclusion

We developed TR-SQP-STORM to solve stochastic optimization problems with equality constraints.
The algorithm is developed in a random model setup where the objective model is estimated suffi-
ciently accurate with a high but fixed probability. We adopted the adaptive relaxation technique to
resolve the infeasibility issue. The global almost sure convergence property of TR-SQP-STORM is
established and its superior performance is demonstrated on a subset of CUTEst problems.
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Appendix A. Proofs

A.1. Fundamental lemmas

Lemma 4 Suppose Assumptions 1 and 2 hold. When Ak happens, for k ≥ K̄ we have∣∣∣Lsk
µ̄K̄

− Lk
µ̄K̄

− Predk
∣∣∣ ≤ 1

2
(2κg + L∇f + κB + µ̂LG)∆

2
k. (6)

Proof Let Lsk
µ̄K̄

:= Lµ̄K̄
(xsk),Lk

µ̄K̄
:= Lµ̄K̄

(xk), then for all k ≥ K̄, it follows from definitions of
Lµ̄K̄

(x) and Predk that∣∣∣Lsk
µ̄K̄

− Lk
µ̄K̄

− Predk
∣∣∣ = ∣∣∣∣fsk + µ̄K̄∥csk∥ − fk − ḡTk ∆xk −

1

2
∆xT

kBk∆xk − µ̄K̄∥ck +GT
k∆xk∥

∣∣∣∣
≤
∣∣∣∣(∇fk − ḡk)

T∆xk +
1

2
(L∇f + ∥Bk∥+ µ̄K̄LG)∥∆xk∥2

∣∣∣∣
≤∥∇fk − ḡk∥∥∆xk∥+

1

2
(L∇f + κB + µ̂LG)∥∆xk∥2, (7)

in the first inequality, we use Taylor expansion and Lipschitz continuity of ∇f(x) and G(x). In the
last inequality, we use Cauchy Schwartz inequality, ∥Bk∥ ≤ κB and µ̄K̄ ≤ µ̂. Since Ak holds, we
have ∥∇fk − ḡk∥ ≤ κg∆k, which combined with (7) and ∥∆xk∥ ≤ ∆k yields the result.

Lemma 5 Suppose Assumptions 1 and 2 hold, and also suppose Ak ∩Bk happens and for k ≥ K̄,

∥∇̄Lk∥ ≥ max

{
max{1, η̃0} ·max{κB,

√
κ2,G},

Υ1

κfcd(1− η0)

}
∆k, (8)

where Υ1 = 4κf + 2κg + L∇f + κB + µ̂LG, then ∆xk is a successful trial step.

Proof To show that ∆xk is a successful step, we need to show that both conditions in (5) hold.
Noticing that ∥Bk∥ ≤ κB, ∥Gk∥ ≤ √

κ2,G, it is implied by (8) that ρ̄2 ≥ η̃0 ·max{∥Bk∥, ∥Gk∥, 1},
so the second condition in (5) holds trivially. Next we need to show that ρ̄1 > η0. From the
definition of ρ̄1, we have

ρ̄1 =
Aredk
Predk

=
L̄sk
µ̄K̄

− L̄k
µ̄K̄

Predk
=

L̄sk
µ̄K̄

− Lsk
µ̄K̄

+ Lsk
µ̄K̄

−mk
µ̄K̄

(∆xk) + Lk
µ̄K̄

− L̄k
µ̄K̄

Predk
+ 1,

since Predk = mk
µ̄K̄

(∆xk)−mk
µ̄K̄

(0) and mk
µ̄K̄

(0)− Lk
µ̄K̄

= 0. Rearranging the terms, we find

|ρ̄1 − 1| ≤

∣∣∣L̄sk
µ̄K̄

− Lsk
µ̄K̄

∣∣∣+ ∣∣∣Lsk
µ̄K̄

−mk
µ̄K̄

(∆xk)
∣∣∣+ ∣∣∣Lk

µ̄K̄
− L̄k

µ̄K̄

∣∣∣∣∣Predk
∣∣ . (9)

Now we consider the four terms on the right-hand-side of (9). We first note that (8) shows ∆k ≤
1

max{κB ,
√
κ2,G}∥∇̄Lk∥, which combined with (2) and ∥Bk∥ ≤ κB, ∥Gk∥ ≤ √

κ2,G yields

∆̃k =
∥∇̄xLk∥
∥∇̄Lk∥

∆k ≤ ∥∇̄xLk∥
∥Bk∥

, and ∆̆k =
∥ck∥

∥∇̄Lk∥
∆k ≤ ∥ck∥

∥Gk∥
. (10)
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Therefore,

Predk
(4)
≤ −

κfcd
2

∥∇̄xLk∥min

{
∆̃k,

∥∇̄xLk∥
∥Bk∥

}
−

κfcd
2

∥ck∥min

{
∆̆k,

∥ck∥
∥Gk∥

}
(8),(10)
= −

κfcd
2

∥∇̄xLk∥∆̃k −
κfcd
2

∥ck∥∆̆k

(2)
= −

κfcd
2

∥∇̄xLk∥2

∥∇̄Lk∥
∆k −

κfcd
2

∥ck∥2

∥∇̄Lk∥
∆k

=−
κfcd
2

∥∇̄Lk∥∆k, (since∥∇̄xLk∥2 + ∥ck∥2 = ∥∇̄Lk∥2) (11)

which implies ∣∣Predk
∣∣ ≥ κfcd

2
∥∇̄Lk∥∆k. (12)

Next, we consider
∣∣∣L̄k

µ̄K̄
− Lk

µ̄K̄

∣∣∣ and
∣∣∣L̄sk

µ̄K̄
− Lsk

µ̄K̄

∣∣∣. From the definitions of Lµ̄(x) and L̄µ̄(x), it is
easy to check that Bk holds is equivalently to

max
{∣∣∣L̄k

µ̄K̄
− Lk

µ̄K̄

∣∣∣ , ∣∣∣L̄sk
µ̄K̄

− Lsk
µ̄K̄

∣∣∣} ≤ κf∆
2
k. (13)

For the last term
∣∣∣Lsk

µ̄K̄
−mk

µ̄K̄
(∆xk)

∣∣∣, we note that since Predk = mk
µ̄K̄

(∆xk) − mk
µ̄K̄

(0) and

mk
µ̄K̄

(0)− Lk
µ̄K̄

= 0, when Ak holds∣∣∣Lsk
µ̄K̄

−mk
µ̄K̄

(∆xk)
∣∣∣ = ∣∣∣Lsk

µ̄K̄
− Lk

µ̄K̄
+mk

µ̄K̄
(0)−mk

µ̄K̄
(∆xk)

∣∣∣
=

∣∣∣Lsk
µ̄K̄

− Lk
µ̄K̄

− Predk
∣∣∣

(6)
≤ 1

2
(2κg + L∇f + κB + µ̂LG)∆

2
k. (14)

Combining (9), (12), (13) and (14), we have

|ρ̄1 − 1| ≤
(4κf + 2κg + L∇f + κB + µ̂LG)∆k

κfcd∥∇̄Lk∥
(8)
≤ 1− η0,

equivalently, ρ̄1 ≥ η0. Thus (5) holds and ∆xk is a successful step.

Lemma 6 Suppose Assumptions 1 and 2 hold, and also suppose Bk happens and ∆xk is a suc-
cessful step, then for k ≥ K̄, we have

Lk+1
µ̄K̄

− Lk
µ̄K̄

≤ −Υ2∆
2
k,

where Υ2 =
κfcd

4 η0η̃0min {1, η̃0}.

Proof Since the ∆xk is successful, we have xk+1 = xsk and both conditions in (5) hold. Note

that ρ̄2 ≥ η̃0 ·max{∥Bk∥, ∥Gk∥, 1} is equivalent to min
{
∥∇̄Lk∥, ∥∇̄Lk∥

max{∥Bk∥,∥Gk∥}

}
≥ η̃0∆k. It is

9



TRUST-REGION SQP-STORM: FIRST-ORDER STATIONARITY

easy to check that ∥∇̄Lk∥ ≥ η̃0∆k leads to ∥∇̄xLk∥ ≥ η̃0∆̃k and ∥ck∥ ≥ η̃0∆̆k, ∥∇̄Lk∥
max{∥Bk∥,∥Gk∥} ≥

η̃0∆k leads to ∥∇̄xLk∥
∥Bk∥ ≥ η̃0∆̃k and ∥ck∥

∥Gk∥ ≥ η̃0∆̆k. Therefore, when the trial step is successful, we
have

Aredk
(5)
≤ η0Predk

(4)
≤ −

κfcd
2

η0∥∇̄xLk∥min

{
∆̃k,

∥∇̄xLk∥
∥Bk∥

}
−

κfcd
2

η0∥ck∥min

{
∆̆k,

∥ck∥
∥Gk∥

}
≤−

κfcd
2

η0η̃0min {1, η̃0} ∆̃2
k −

κfcd
2

η0η̃0min {1, η̃0} ∆̆2
k

=−
κfcd
2

η0η̃0min {1, η̃0}∆2
k, (15)

in the last equality, we use the fact that ∆̆2
k + ∆̃2

k = ∆2
k. When Bk holds and ∆xk is successful, we

have
max

{∣∣∣L̄k
µ̄K̄

− Lk
µ̄K̄

∣∣∣ , ∣∣∣L̄k+1
µ̄K̄

− Lk+1
µ̄K̄

∣∣∣} ≤ κf∆
2
k =

κfcd
16

η0η̃0min {1, η̃0}∆2
k. (16)

Therefore, since Aredk = L̄k+1
µ̄K̄

− L̄k
µ̄K̄

we have

Lk+1
µ̄K̄

− Lk
µ̄K̄

=Lk+1
µ̄K̄

− L̄k+1
µ̄K̄

+ L̄k+1
µ̄K̄

− L̄k
µ̄K̄

+ L̄k
µ̄K̄

− Lk
µ̄K̄

≤
∣∣∣Lk+1

µ̄K̄
− L̄k+1

µ̄K̄

∣∣∣+ Aredk +
∣∣∣L̄k

µ̄K̄
− Lk

µ̄K̄

∣∣∣ . (17)

The conclusion follows by combining (15), (16) and (17).

In the condition of ν, Υ2 is defined in Lemma 6,

Υ3 =
κfcd
8

max

{
max{1, η̃0} ·max{κB,

√
κ2,G}

max{1, η̃0} ·max{κB,
√
κ2,G}+ κg

,
4Υ1

4Υ1 + (1− η0)κfcdκg

}
,

where Υ1 is defined in Lemma 5. We choose ζ such that

ζ ≥ κg +max

{
max{1, η̃0} ·max{κB,

√
κ2,G},

4Υ1

κfcd(1− η0)

}
. (18)

Lemma 7 Suppose conditions of Theorem 3 are satisfied, then for k ≥ K̄, we have

Ek[Φ
k+1
µ̄K̄

]− Φk
µ̄K̄

≤ 1− ν

4

(
1

γ2
− 1

)
∆2

k. (19)

Proof First note that if the step is not successful, then xk+1 = xk,∆k+1 = ∆k/γ, ϵ̄k+1 = ϵ̄k/γ,
and

Φk+1
µ̄K̄

− Φk
µ̄K̄

=
1− ν

2

(
1

γ2
− 1

)
∆2

k +
1− ν

2

(
1

γ
− 1

)
ϵ̄k. (20)

For k ≥ K̄, we consider two cases separately: ∥∇Lk∥ ≥ ζ∆k and ∥∇Lk∥ < ζ∆k, where ζ is
chosen to satisfy (18).
Case 1: ∥∇Lk∥ ≥ ζ∆k

a. Ak ∩ Bk happens. When Ak holds, we have∣∣∥∇Lk∥ − ∥∇̄Lk∥
∣∣ ≤ ∥∇Lk − ∇̄Lk∥ = ∥Pk(∇fk − ḡk)∥ ≤ ∥∇fk − ḡk∥ ≤ κg∆k,

10



TRUST-REGION SQP-STORM: FIRST-ORDER STATIONARITY

therefore, ∥∇̄Lk∥ ≥ ∥∇Lk∥− κg∆k ≥ (ζ − κg)∆k. Thus ∥∇Lk∥ ≥ ζ∆k and (18) together imply

∥∇̄Lk∥ ≥ max

{
max{1, η̃0} ·max{κB,

√
κ2,G},

4Υ1

κfcd(1− η0)

}
∆k. (21)

Therefore, (8) holds and Lemma 5 shows that the trial step is successful.
Reliable step: When ∆xk is a reliable step, we find

Lsk
µ̄K̄

− Lk
µ̄K̄

(6)
≤Predk +

1

2
(2κg + L∇f + κB + µ̂LG)∆

2
k

≤1

2
Predk −

1

2
ϵ̄k +

1

2
(2κg + L∇f + κB + µ̂LG)∆

2
k

(4)
≤ −

κfcd
4

∥∇̄xLk∥min

{
∆̃k,

∥∇̄xLk∥
∥Bk∥

}
−

κfcd
4

∥ck∥min

{
∆̆k,

∥ck∥
∥Gk∥

}
− 1

2
ϵ̄k +

1

2
(2κg + L∇f + κB + µ̂LG)∆

2
k.

Using derivation similar to (11), we have

Lsk
µ̄K̄

− Lk
µ̄K̄

≤−
κfcd
4

∥∇̄Lk∥∆k −
1

2
ϵ̄k +

1

2
(2κg + L∇f + κB + µ̂LG)∆

2
k

(21)
≤ −

κfcd
8

∥∇̄Lk∥∆k −
1

2
ϵ̄k. (22)

Combining (21), ∥∇Lk∥ ≥ ζ∆k and ∥∇̄Lk∥ ≥ ∥∇Lk∥ − κg∆k, we also have

∥∇̄Lk∥ ≥∥∇Lk∥

− κg min

{
1

max{1, η̃0} ·max{κB,
√
κ2,G}+ κg

,
κfcd(1− η0)

4Υ1 + (1− η0)κfcdκg

}
∥∇Lk∥

≥max

{
max{1, η̃0} ·max{κB,

√
κ2,G}

max{1, η̃0} ·max{κB,
√
κ2,G}+ κg

,
4Υ1

4Υ1 + (1− η0)κfcdκg

}
∥∇Lk∥. (23)

Combining (22) with (23), we have

Lsk
µ̄K̄

− Lk
µ̄K̄

≤ −Υ3∥∇Lk∥∆k −
1

2
ϵ̄k,

where Υ3 =
κfcd

8 · max
{

max{1,η̃0}·max{κB ,
√
κ2,G}

max{1,η̃0}·max{κB ,
√
κ2,G}+κg

, 4Υ1
4Υ1+(1−η0)κfcdκg

}
. Therefore, when ∆xk

is a reliable step, we have

Φk+1
µ̄K̄

− Φk
µ̄K̄

≤− νΥ3∥∇Lk∥∆k −
1

2
νϵ̄k +

1− ν

2
(γ2 − 1)∆2

k +
1− ν

2
(γ − 1)ϵ̄k

≤− νΥ3∥∇Lk∥∆k −
1

4
νϵ̄k +

1− ν

2
(γ2 − 1)∆2

k, (24)

since ν
1−ν ≥ 2γ

η0
and η0 ≤ 1 imply

−1

2
νϵ̄k +

1− ν

2
(γ − 1)ϵ̄k ≤ −1

4
νϵ̄k.

11
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Moreover, since ∥∇Lk∥ ≥ ζ∆k, we have

−νΥ3∥∇Lk∥∆k +
1− ν

2
(γ2 − 1)∆2

k ≤
[
−νΥ3ζ +

1− ν

2
(γ2 − 1)

]
∆2

k ≤ 0.

Unreliable step: When ∆xk is unreliable, one finds

Lsk
µ̄K̄

− Lk
µ̄K̄

(6)
≤Predk +

1

2
(2κg + L∇f + κB + µ̂LG)∆

2
k

(4)
≤ −

κfcd
2

∥∇̄xLk∥min

{
∆̃k,

∥∇̄xLk∥
∥Bk∥

}
−

κfcd
2

∥ck∥min

{
∆̆k,

∥ck∥
∥Gk∥

}
+

1

2
(2κg + L∇f + κB + µ̂LG)∆

2
k.

Using similar derivation to (22), we have

Lsk
µ̄K̄

− Lk
µ̄K̄

(21)
≤ −

κfcd
4

∥∇̄Lk∥∆k. (25)

Combining (23) and (25), we have

Lsk
µ̄K̄

− Lk
µ̄K̄

≤ −2Υ3∥∇Lk∥∆k,

where Υ3 is defined above, and thus

Φk+1
µ̄K̄

− Φk
µ̄K̄

≤− 2νΥ3∥∇Lk∥∆k +
1− ν

2
(γ2 − 1)∆2

k +
1− ν

2

(
1

γ
− 1

)
ϵ̄k. (26)

Since γ − 1 ≥ 1− 1
γ that

−1

4
νϵ̄k ≤ 1− ν

2

(
1

γ
− 1

)
ϵ̄k.

Thus when Ak ∩ Bk holds, we always have

Φk+1
µ̄K̄

− Φk
µ̄K̄

≤− νΥ3∥∇Lk∥∆k +
1− ν

2
(γ2 − 1)∆2

k +
1− ν

2

(
1

γ
− 1

)
ϵ̄k. (27)

b. Ak∩Bc
k happens. Using similar analysis as in Case 1. a., we have that if the trial step is reliable,

then (24) holds, if the trial step is unreliable, then (26) holds. Thus (27) is guaranteed. If the step is
unsuccessful, then (20) holds. It is implied by ∥∇Lk∥ ≥ ζ∆k that

−νΥ3∥∇Lk∥∆k +
1− ν

2
(γ2 − 1)∆2

k ≤ 1− ν

2

(
1

γ2
− 1

)
∆2

k. (28)

Therefore when Ak ∩ Bc
k holds, we always have

Φk+1
µ̄K̄

− Φk
µ̄K̄

≤ 1− ν

2

(
1

γ2
− 1

)
∆2

k +
1− ν

2

(
1

γ
− 1

)
ϵ̄k. (29)

12
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c. Ac
k ∩ Bk happens. We consider the following three cases.

Reliable step: When ∆xk is reliable, we find

Aredk
(5)
≤ η0Predk ≤1

2
η0Predk −

1

2
η0ϵ̄k

(15)
≤ −

κfcd
4

η0η̃0min {1, η̃0}∆2
k −

1

2
η0ϵ̄k

=−Υ2∆
2
k −

1

2
η0ϵ̄k. (30)

Combining (16), (17) with (30), we have

Lsk
µ̄K̄

− Lk
µ̄K̄

≤ −1

2
Υ2∆

2
k −

1

2
η0ϵ̄k.

Therefore,

Φk+1
µ̄K̄

− Φk
µ̄K̄

≤− 1

2
νΥ2∆

2
k −

1

2
νη0ϵ̄k +

1− ν

2
(γ2 − 1)∆2

k +
1− ν

2
(γ − 1)ϵ̄k

≤− 1

2
νΥ2∆

2
k −

1

4
νη0ϵ̄k +

1− ν

2
(γ2 − 1)∆2

k, (31)

since ν
1−ν ≥ 2γ

η0
implies

−1

2
νη0ϵ̄k +

1− ν

2
(γ − 1)ϵ̄k ≤ −1

4
νη0ϵ̄k. (32)

Unreliable step: When the step ∆xk is unreliable, it follows from Lemma 6 that

Lsk
µ̄K̄

− Lk
µ̄K̄

≤ −Υ2∆
2
k,

therefore

Φk+1
µ̄K̄

− Φk
µ̄K̄

≤− νΥ2∆
2
k +

1− ν

2
(γ2 − 1)∆2

k +
1− ν

2

(
1

γ
− 1

)
ϵ̄k. (33)

Unsuccessful step: When ∆xk is unsuccessful, (20) holds.
Combining (31), (33) and (20), noting that

−1

2
νΥ2∆

2
k +

1− ν

2
(γ2 − 1)∆2

k ≤ 1− ν

2

(
1

γ2
− 1

)
∆2

k, (34)

and since γ − 1 ≥ 1− 1/γ,

−1

4
νη0ϵ̄k ≤ 1− ν

2

(
1

γ
− 1

)
ϵ̄k, (35)

when Ac
k ∩ Bk holds, we always have

Φk+1
µ̄K̄

− Φk
µ̄K̄

≤ 1− ν

2

(
1

γ2
− 1

)
∆2

k +
1− ν

2

(
1

γ
− 1

)
ϵ̄k. (36)

13
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d. Ac
k ∩ Bc

k happens. We consider the following three cases. When ∆xk is successful, we have

Lk+1
µ̄K̄

− Lk
µ̄K̄

=Lk+1
µ̄K̄

− L̄sk
µ̄K̄

+ L̄sk
µ̄K̄

− L̄k
µ̄K̄

+ L̄k
µ̄K̄

− Lk
µ̄K̄

≤
∣∣∣Lk+1

µ̄K̄
− L̄sk

µ̄K̄

∣∣∣+ Aredk +
∣∣∣L̄k

µ̄K̄
− Lk

µ̄K̄

∣∣∣ ,
=
∣∣fsk − f̄sk

∣∣+ Aredk +
∣∣f̄k − fk

∣∣ ,
since Aredk = L̄k+1

µ̄K̄
− L̄k

µ̄K̄
,
∣∣∣Lk+1

µ̄K̄
− L̄sk

µ̄K̄

∣∣∣ = ∣∣fsk − f̄sk
∣∣ and

∣∣∣L̄k
µ̄K̄

− Lk
µ̄K̄

∣∣∣ = ∣∣f̄k − fk
∣∣.

Reliable step: When ∆xk is reliable, one finds

Lk+1
µ̄K̄

− Lk
µ̄K̄

≤
∣∣fsk − f̄sk

∣∣+ Aredk +
∣∣f̄k − fk

∣∣
(30)
≤

∣∣f̄k − fk
∣∣+ ∣∣f̄sk − fsk

∣∣−Υ2∆
2
k −

1

2
η0ϵ̄k.

Therefore, we have

Φk+1
µ̄K̄

− Φk
µ̄K̄

≤ν
∣∣f̄k − fk

∣∣+ ν
∣∣f̄sk − fsk

∣∣− νΥ2∆
2
k −

1

2
νη0ϵ̄k +

1− ν

2
(γ2 − 1)∆2

k

+
1− ν

2
(γ − 1)ϵ̄k

(32),(34),(35)
≤ ν

∣∣f̄k − fk
∣∣+ ν

∣∣f̄sk − fsk
∣∣+ 1− ν

2

(
1

γ2
− 1

)
∆2

k +
1− ν

2

(
1

γ
− 1

)
ϵ̄k.

Unreliable step: When ∆xk is unreliable, one finds

Lk+1
µ̄K̄

− Lk
µ̄K̄

(15)
≤

∣∣f̄k − fk
∣∣+ ∣∣f̄sk − fsk

∣∣− 2Υ2∆
2
k,

and therefore

Φk+1
µ̄K̄

− Φk
µ̄K̄

≤ν
∣∣f̄k − fk

∣∣+ ν
∣∣f̄sk − fsk

∣∣− 2νΥ2∆
2
k +

1− ν

2
(γ2 − 1)∆2

k

+
1− ν

2

(
1

γ
− 1

)
ϵ̄k

(34)
≤ ν

∣∣f̄k − fk
∣∣+ ν

∣∣f̄sk − fsk
∣∣+ 1− ν

2

(
1

γ2
− 1

)
∆2

k +
1− ν

2

(
1

γ
− 1

)
ϵ̄k.

Unsuccessful step: If the step is not successful, we have (20).
It is easy to check that when Ac

k ∩ Bc
k holds, we always have

Φk+1
µ̄K̄

− Φk
µ̄K̄

≤ ν
∣∣f̄k − fk

∣∣+ ν
∣∣f̄sk − fsk

∣∣+ 1− ν

2

(
1

γ2
− 1

)
∆2

k +
1− ν

2

(
1

γ
− 1

)
ϵ̄k.(37)

Now we take expectation on reduction of Φ when ∥∇Lk∥ ≥ ζ∆k given Fk−1. Note that the
event Ak ∩Bk holds with probability at least pgradpf , event Ac

k ∩Bc
k holds with probability at most

(1 − pgrad)(1 − pf ), otherwise Ac
k ∩ Bk and Ak ∩ Bc

k hold. We use Ek to denote E[·|Fk−1], then
when ∥∇Lk∥ ≥ ζ∆k, we have

Ek[Φ
k+1
µ̄K̄

]− Φk
µ̄K̄

=Ek[1Ak∩Bk
(Φk+1

µ̄K̄
− Φk

µ̄K̄
)] + Ek[1Ac

k∩Bk
(Φk+1

µ̄K̄
− Φk

µ̄K̄
)]

+ Ek[1Ak∩Bc
k
(Φk+1

µ̄K̄
− Φk

µ̄K̄
)] + Ek[1Ac

k∩B
c
k
(Φk+1

µ̄K̄
− Φk

µ̄K̄
)].

14
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From the analysis of Case 1. a. b. c., combining (27), (28), (29), and (36), we have

Ek[1Ak∩Bk
(Φk+1

µ̄K̄
− Φk

µ̄K̄
)] + Ek[1Ac

k∩Bk
(Φk+1

µ̄K̄
− Φk

µ̄K̄
)] + Ek[1Ak∩Bc

k
(Φk+1

µ̄K̄
− Φk

µ̄K̄
)]

≤pgradpf

[
−νΥ3∥∇Lk∥∆k +

1− ν

2
(γ2 − 1)∆2

k +
1− ν

2

(
1

γ
− 1

)
ϵ̄k

]
+ [(1− pgrad)pf + (1− pf )pgrad]

[
1− ν

2

(
1

γ2
− 1

)
∆2

k +
1− ν

2

(
1

γ
− 1

)
ϵ̄k

]
. (38)

For Case 1. d., by (37) and max
{
Eξkf

[
|f̄k − fk|2

]
,Eξkf

[
|f̄sk − fsk |2

]}
≤ ϵ̄2k, we have

Ek[1Ac
k∩B

c
k
(Φk+1

µ̄K̄
− Φk

µ̄K̄
)]

≤1

2
(1− pgrad)(1− pf )(1− ν)

[(
1

γ2
− 1

)
∆2

k +

(
1

γ
− 1

)
ϵ̄k

]
+ νEk

[
1Ac

k∩B
c
k
(|f̄k − fk|)

]
+ νEk

[
1Ac

k∩B
c
k
(|f̄sk − fsk |)

]
≤1

2
(1− pgrad)(1− pf )(1− ν)

[(
1

γ2
− 1

)
∆2

k +

(
1

γ
− 1

)
ϵ̄k

]
+ 2ν

√
(1− pgrad)(1− pf )ϵ̄k, (39)

in the last inequality we use Hölder’s inequality. Combining (38), (39) and rearranging the terms,
we have

Ek[Φ
k+1
µ̄K̄

]− Φk
µ̄K̄

≤1− ν

2

[
pgradpf − 1

γ2
[(1− pgrad)(1− pf ) + (1− pgrad)pf + (1− pf )pgrad]

]
(γ2 − 1)∆2

k

− pgradpfνΥ3∥∇Lk∥∆k +

[
1− ν

2

(
1

γ
− 1

)
+ 2ν

√
(1− pgrad)(1− pf )

]
ϵ̄k. (40)

Noting that

pgradpf − 1

γ2
[(1− pgrad)(1− pf ) + (1− pgrad)pf + (1− pf )pgrad] ≤ pgradpf ,

it follows from the combination of ∥∇Lk∥ ≥ ζ∆k and (40) that

Ek[Φ
k+1
µ̄K̄

]− Φk
µ̄K̄

≤− pgradpfνΥ3∥∇Lk∥∆k +
1

2
pgradpf (1− ν)(γ2 − 1)∆2

k

+

[
1− ν

2

(
1

γ
− 1

)
+ 2ν

√
(1− pgrad)(1− pf )

]
ϵ̄k

≤− pgradpfνΥ3∥∇Lk∥∆k +
1

2
pgradpf (1− ν)(γ2 − 1)∆2

k

≤− 1

2
pgradpfνΥ3∥∇Lk∥∆k (41)

Case 2: ∥∇Lk∥ < ζ∆k

15
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a. Bk happens. Using identical proof as in Case 1. c., it follows that no matter the trial step is
successful or not, we always have

Φk+1
µ̄K̄

− Φk
µ̄K̄

≤ 1− ν

2

(
1

γ2
− 1

)
∆2

k +
1− ν

2

(
1

γ
− 1

)
ϵ̄k. (42)

b. Bc
k happens. Using identical proof as in Case 1. d., it follows that no matter the trial step is

successful or not, we always have

Φk+1
µ̄K̄

− Φk
µ̄K̄

≤ ν|f̄k − fk|+ ν|f̄sk − fsk |+
1− ν

2

(
1

γ2
− 1

)
∆2

k +
1− ν

2

(
1

γ
− 1

)
ϵ̄k. (43)

Now we take expectation on Φk+1
µ̄K̄

− Φk
µ̄K̄

when ∥∇Lk∥ ≤ ζ∆k given Fk−1. Since Bk holds
with probability at least pf , otherwise Bc

k holds, it follows from the combination of (42) and (43)
that

Ek[Φ
k+1
µ̄K̄

]− Φk
µ̄K̄

=Ek[1Bk
(Φk+1

µ̄K̄
− Φk

µ̄K̄
)] + Ek[1Bc

k
(Φk+1

µ̄K̄
− Φk

µ̄K̄
)]

≤1− ν

2

(
1

γ2
− 1

)
∆2

k +
1− ν

2

(
1

γ
− 1

)
ϵ̄k + νEk[1Bc

k

(∣∣f̄k − fk
∣∣)] + νEk[1Bc

k

(∣∣f̄sk − fsk
∣∣)]

≤1− ν

2

(
1

γ2
− 1

)
∆2

k +

[
1− ν

2

(
1

γ
− 1

)
+ 2ν

√
1− pf

]
ϵ̄k,

where in the last inequality, we use Hölder inequality. Notice that

1− ν

2

(
1

γ
− 1

)
+ 2ν

√
1− pf ≤ 0.

Therefore, when ∥∇Lk∥ ≤ ζ∆k, we have

Ek[Φ
k+1
µ̄K̄

]− Φk
µ̄K̄

≤ 1− ν

2

(
1

γ2
− 1

)
∆2

k. (44)

Combining the conclusion (41) in Case 1 and the conclusion (44) in Case 2, also noting that 1 −
1/γ2 ≤ γ2 − 1 and pgradpf ≥ 1/2, we show that (19) holds.

Corollary 8 Under the conditions of Lemma 7, we have

lim
k→∞

∆k = 0 with probability 1.

Proof Taking total expectation on both sides of (19), summing up for all k ≥ K̄, and noting that Φ
is bounded below, we find that

E

 ∞∑
k=K̄

∆2
k

 < ∞.

16
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By Fubini’s theorem, with probability 1,
∞∑

k=K̄

∆2
k < ∞,

which implies that ∆k → 0 with probability 1. This completes the proof.

Lemma 9 Suppose the conditions of Lemma 7 are satisfied, then we have

lim inf
k→∞

∥∇Lk∥ = 0 almost surely.

Proof Suppose that the almost sure event ∆k → 0 happens and we prove this theorem by contra-
diction. Let us assume that there exists ϵ > 0 such that, with positive probability, for all k ≥ K̄, we
have

∥∇Lk∥ ≥ ϵ.

Since ∆k → 0, there exists k0 such that for all k ≥ k0,

∆k ≤ b := min

{
∆max

γ
,
ϵ

ζ

}
, (45)

where ζ is chosen to satisfies (18). We define rk = logγ

(
∆k
b

)
, which satisfies rk ≤ 0 for all

k ≥ k0. The main idea of the proof is to show that such rk occurs only with probability zero, hence
obtaining a contradiction with the initial assumption of ∥∇Lk∥ ≥ ϵ,∀k ≥ K̄.

We first show that {rk}k is a submartingale. Consider some k ≥ k0 for which Ak and Bk both
hold, which happens with probability at least pgradpf . Due to (45) and ∥∇Lk∥ ≥ ϵ, we have exactly
the same situation as in Case 1. a. Therefore, we conclude that the trial step obtained at the k-th
iteration is successful. Since ∆k ≤ ∆max

γ , we have ∆k+1 = γ∆k. Consequently, rk+1 = rk + 1.
For all other outcomes of Ak and Bk, which occur with total probability of at most 1− pgradpf , we
have ∆k+1 ≥ γ−1∆k, consequently, rk+1 ≥ rk − 1. Moreover, since pgradpf ≥ 1/2, we find

Ek[rk+1] ≥ pgradpf (rk + 1) + (1− pgradpf )(rk − 1) ≥ rk,

which implies that {rk}k is a submartingale. Now we define wk =
∑k

i=0(2 · 1Ak
· 1Bk

− 1). Note
that {wk}k is a submartingale since

Ek[wk] = Ek[wk−1] + Ek[2 · 1Ak
· 1Bk

− 1] = wk−1 + 2Ek[1Ak
· 1Bk

]− 1 ≥ wk−1,

the last equality holds because pgradpf ≥ 1/2. Also note that {wk}k is on the same probability
space as {rk}k. Since wk has only ±1 increments, Theorem 4.4 of [8] shows that lim supk→∞wk =
∞ holds with probability 1. By the construction of {rk}k and {wk}k, we know that rk − rk0 ≥
wk−wk0 . Therefore, rk has to be positive infinitely often with probability one. This implies that for
the sequence {rk}k, rk ≤ 0 for all k ≥ k0 occurs with probability zero. Therefore our assumption
that ∥∇Lk∥ ≥ ϵ holds for all k > K̄ with positive probability is false and we have

lim inf
k→∞

∥∇Lk∥ = 0

holds almost surely. This completes the proof.

17
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Lemma 10 Suppose the conditions of Lemma 7 are satisfied. Fix ϵ > 0 and define the sequence
{Kϵ} consisting of the natural numbers k for which ∥∇Lk∥ ≥ ϵ. Then we have∑

k∈{Kϵ}

∆k < ∞ with probability 1.

Proof Suppose that ∆k → 0 happens, then there exists k0 such that ∆k ≤ ϵ/ζ,∀k ≥ k0, where ζ
is chosen to satisfy (18). WLOG, we assume k0 ≥ K̄. Let K denote the sequence of indices k such
that k ∈ Kϵ and k ≥ k0. Then for all k ∈ K, ∥∇Lk∥ ≥ ζ∆k holds. It follows from (41) that

Ek[Φ
k+1
µ̄K̄

]− Φk
µ̄K̄

≤ −1

2
pgradpfνΥ3ϵ∆k, ∀k ∈ K.

Taking total expectation, noting that Lemma 7 implies that E[Φk
µ̄K̄

] is non-increasing and bounded
below, we sum up the above inequalities for all k ∈ K and get∑

k∈K
E[∆k] < ∞.

By Fubini’s theorem, this implies∑
k∈K

∆k < ∞ with probability 1.

Since Kϵ ⊂ K ∪ {k ≤ k0}, k0 is finite and ∆k ≤ ∆max, the statement follows.

A.2. Proof of Theorem 3

Proof Suppose that ∆k → 0 happens and we will prove this theorem by contradiction. Let us
assume that with some probability, there exists ϵ > 0 and an infinite index set K1 ⊆ N such that
∥∇Lk∥ > 2ϵ for all k ∈ K1. On the other hand, Lemma 9 shows that with probability 1, there exists
an infinite index set K2 such that ∥∇Lk∥ ≤ ϵ for all k ∈ K2. They imply that with some nonzero
probability, there are index sets {mi}∞i=0 ⊂ N and {ni}∞i=0 ⊂ N with mi < ni for all i ∈ N such
that

∥∇Lmi∥ ≥ 2ϵ, ∥∇Lni∥ < ϵ, and ∥∇Lk∥ ≥ ϵ for all k ∈ {mi + 1, · · · , ni − 1}.

Since K̄ is finite, WLOG, we assume that K̄ +1 ≤ mi < ni for all i ∈ N. By triangular inequality,
we have

ϵ < |∥∇Lni∥ − ∥∇Lmi∥| ≤
ni−1∑
j=mi

|∥∇Lj+1∥ − ∥∇Lj∥| (46)

From Assumption 1, we find that ∇L(x,λ) is Lipschitz continuous in both x and λ. Since we
define λk = −[GkG

T
k ]

−1Gk∇fk, Assumption 1 implies that λ is also Lipschitz in x, so there is a
constant L∇L > 0 such that ∥∇Lj+1 − ∇Lj∥ ≤ L∇L∥xj+1 − xj∥ holds for ∀j ∈ N. It follows

18
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from (46) that

ϵ ≤
ni−1∑
j=mi

|∥∇Lj+1∥ − ∥∇Lj∥| ≤
ni−1∑
j=mi

∥∇Lj+1 −∇Lj∥

≤L∇L

ni−1∑
j=mi

∥xj+1 − xj∥ ≤ L∇L

∆mi +

ni−1∑
j=mi+1

∆j

 .

Since ∆k converges to zero, for any i large enough, ∆mi <
ϵ

2L∇L
holds. Then L∇L

∑ni−1
j=mi+1∆j >

ϵ
2 > 0. Since

∑
i

∑ni−1
j=mi+1∆j ≤

∑
j∈{Kϵ}∆j , we then have

∑
j∈{Kϵ}∆j = ∞. The above

proof shows that if limk→∞ ∥∇Lk∥ = 0 doesn’t hold almost surely, then with positive probability,∑
j∈{Kϵ}∆j = ∞. This yields a contradiction to Lemma 10. Therefore, limk→∞ ∥∇Lk∥ = 0

holds almost surely.

Appendix B. Behavior of the merit parameter

Assumption 11 For all k ∈ N, there exists some positive deterministic parameter M1 ∈ R, such
that ∥∇fk − ḡk∥ ≤ M1.

Lemma 12 Under the Assumptions 1 and 11, there exist a stochastic K̄ < ∞ and a deterministic
constant µ̂, such that for ∀k > K̄, µ̄k = µ̄K̄ ≤ µ̂.

Proof It suffices to show that (4) is always satisfied if µ̄k is larger than a threshold independent of
k. First note that by the adaptive relaxation technique, ∥ck +Gk∆xk∥ − ∥ck∥ = −γk∥ck∥, then

Predk =ḡTk ∆xk +
1

2
∆xT

kBk∆xk + µ̄k(∥ck +Gk∆xk∥ − ∥ck∥)

=ḡTk Pkuk +
1

2
uT
k PkBkPkuk + γk(ḡk −∇fk)

Tvk + γk∇fT
k vk + γkv

T
kBkPkuk

+
1

2
γ2kv

T
kBkvk − µ̄kγk∥ck∥

≤ −
κfcd
2

∥∇̄xLk∥min

{
∆̃k,

∥∇̄xLk∥
∥Bk∥

}
+ γk∥ḡk −∇fk∥∥vk∥+ γk∥∇fk∥∥vk∥

+ γk∥Bk∥∥vk∥∥Pkuk∥+
1

2
γ2k∥vk∥∥Bk∥∥vk∥ − µ̄kγk∥ck∥

=−
κfcd
2

∥∇̄xLk∥min

{
∆̃k,

∥∇̄xLk∥
∥Bk∥

}
−

κfcd
2

γk∥vk∥∥ck∥+
κfcd
2

γk∥vk∥∥ck∥

+ γk∥ḡk −∇fk∥∥vk∥+ γk∥∇fk∥∥vk∥+ γk∥Bk∥∥vk∥∥Pkuk∥

+
1

2
γ2k∥vk∥∥Bk∥∥vk∥ − µ̄kγk∥ck∥.
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Using Assumptions 1 and 11, also noting that ∥vk∥ ≤ ∥GT
k [GkG

T
k ]

−1∥∥ck∥ ≤ 1√
κ1,G

∥ck∥, γk ≤ 1,
and ∥Pkuk∥ ≤ ∆k ≤ ∆max, we have

Predk ≤−
κfcd
2

∥∇̄xLk∥min

{
∆̃k,

∥∇̄xLk∥
∥Bk∥

}
−

κfcd
2

γk∥vk∥∥ck∥+ γk
κcκfcd
2
√
κ1,G

∥ck∥

+ γk
M1√
κ1,G

∥ck∥+ γk
κ∇f√
κ1,G

∥ck∥+ γk
κB∆max√

κ1,G
∥ck∥+ γk

κBκc
2κ1,G

∥ck∥ − µ̄kγk∥ck∥

=−
κfcd
2

∥∇̄xLk∥min

{
∆̃k,

∥∇̄xLk∥
∥Bk∥

}
−

κfcd
2

γk∥vk∥∥ck∥

+

(
2M1 + 2κ∇f + 2κB∆max + κcκfcd

2
√
κ1,G

+
κBκc
2κ1,G

− µ̄k

)
γk∥ck∥.

Therefore, if

µ̄k ≥
2M1 + 2κ∇f + 2κB∆max + κcκfcd

2
√
κ1,G

+
κBκc
2κ1,G

:= µ̂/ρ,

we have

Predk ≤ −
κfcd
2

∥∇̄xLk∥min

{
∆̃k,

∥∇̄xLk∥
∥Bk∥

}
−

κfcd
2

γk∥vk∥∥ck∥. (47)

It is implied by the computation of vk that ck = −Gkvk, which leads to ∥ck∥ = ∥Gkvk∥ ≤
∥Gk∥∥vk∥, equivalently, ∥vk∥ ≥ ∥ck∥/∥Gk∥. Hence,

−
κfcd
2

γk∥vk∥∥ck∥ = −
κfcd
2

∥ck∥min
{
∆̆k, ∥vk∥

}
≤ −

κfcd
2

∥ck∥min

{
∆̆k,

∥ck∥
∥Gk∥

}
. (48)

It follows from (47) and (48) that

Predk ≤ −
κfcd
2

∥∇̄xLk∥min

{
∆̃k,

∥∇̄xLk∥
∥Bk∥

}
−

κfcd
2

∥ck∥min

{
∆̆k,

∥ck∥
∥Gk∥

}
,

meaning that (4) is satisfied. At the same time, since we update µ̄k by a factor of ρ in each while
loop, there must be a K̄ < ∞ such that µ̄k = µ̄K̄ for all k ≥ K̄ and µ̄K̄ ≤ µ̂. This completes the
proof.
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