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Abstract
We investigate second-order methods for nonconvex optimisation, and propose a Random Subspace
Adaptive Cubic Regularisation (R-ARC) method, which we analyse under various assumptions on
the objective function and the sketching matrices that generate the random subspaces. We show
that, when the sketching matrix achieves a subspace embedding of the augmented matrix of the
gradient and the Hessian with sufficiently high probability, then the R-ARC method satisfies, with
high probability, a complexity bound of order O

(
ϵ−3/2

)
to drive the (full) gradient norm below ϵ;

matching in the accuracy order its deterministic counterpart (ARC). As an illustration, we particu-
larise our results to the special case of a scaled Gaussian ensemble.

1. Introduction

High-order methods for smooth nonconvex optimization problems use second- or higher-order
derivative information at each iteration to determine the next iterate, in addition to gradient informa-
tion. Using problem information beyond first-order typically results in faster rates of convergence
of the ensuing methods, and attainment of second-order (or higher) optimality conditions [2, 6],
allowing the avoidance of (strict) saddle points in machine learning applications. However, the use
of higher order derivative information increases the computational costs per iteration, especially
when derivative evaluations are expensive. Compared with first-order methods which need at most
d partial/componentwise derivatives, higher-order methods need to evaluate d2 or even d3 partial
derivatives at each iteration, where d is the number of variables in the objective. For many machine
learning models, especially deep neural networks, d is commonly in the millions, making higher
order optimisation methods inapplicable.

Subspace methods aim to alleviate this high computational cost by using only randomly sam-
pled/projected derivative information at each iteration, thus reducing the dimensionality of the pa-
rameter space to a manageable magnitude. For example, the (basic) coordinate descent method
[10] uses only one partial derivative at each iteration, instead of the full gradient. More gener-
ally, subspace methods make use of the theoretical guarantees offered by Johnson-Lindenstrauss
(JL) Lemma and related random embedding constructions, where the full gradient is replaced by a
randomly embedded gradient in lower dimensions with approximately the same norm. A generic
first-order random subspace framework based on random embeddings is analysed in [3, 8].

The purpose of this paper is to extend the analysis based on random embeddings in [3, 8] to
adaptive cubically regularised second-order methods, for which we propose a subspace variant (R-
ARC). We show almost-sure global convergence of R-ARC to a first-order stationary point for
non-convex objectives, with a convergence rate matching the full space counterpart, which is the
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optimal rate for second order methods [4]. Moreover, a variety of random embeddings, including
Gaussian, countsketch or subsampling can be applied to the gradient and the second derivatives of
the objective function.

Although the analysis here makes use of the generic framework in [3, 8], in this work we make
extensive use of subspace embedding properties of random ensembles, not just the pointwise JL-
type needed in [3, 8]. The former are needed due to a particular aspect of the analysis of cubic
regularization methods, namely, the presence, at the current iteration, of the gradient evaluated at
the next (random) iterate. Controlling this random quantity has proved challenging and we are not
aware of other existing results in a sketching framework and for nonconvex objectives. Note that
the randomized cubic regularization frameworks in [5, 11–13] are designed for sums of functions
and sketching in the observational domain, while the cubic regularization variant with probabilis-
tic models in [1] is more restrictive compared to our framework and anaylsis (see (9) and related
comments).

2. R-ARC: random subspace adaptive cubic regularisation method

We first describe the random subspace adaptive cubic regularization algorithm (R-ARC). The algo-
rithm builds on the deterministic ARC algorithm [2, 6], by replacing the full gradient and the full
Hessian with their projections onto a random subspace. At each iteration, a random matrix Sk is
drawn (whose desired properties are to be discussed), with which a random subspace model is built
around the current iterate. The model is approximately minimised in the subspace and the minimiser
is projected back into the full space, in order to obtain a full-dimensional trial step sk, which is then
either accepted or rejected, by evaluating the function decrease/increase.

Algorithm 1 Random subspace cubic regularisation algorithm (R-ARC)

Initialization Choose a matrix distribution S of matrices S ∈ Rl×d. Choose constants γ1 ∈ (0, 1),
γ2 > 1, θ ∈ (0, 1), κT ≥ 0 and αmax > 0 such that γ2 = 1

γc
1
, for some c ∈ N+. Initialize the

algorithm by setting x0 ∈ Rd, α0 = αmaxγ
p
1 for some p ∈ N+ and k = 0.

1. Compute a reduced model and a trial step
Draw a random matrix Sk ∈ Rl×d from S, and let

m̂k (ŝ) = f(xk) + ⟨Sk∇f(xk), ŝ⟩+
1

2
⟨ŝ, Sk∇2f(xk)S

T
k ŝ⟩+

1

3αk

∥∥ST
k ŝ

∥∥3
2

= q̂k(ŝ) +
1

3αk

∥∥ST
k ŝ

∥∥3
2
, (1)

where q̂k(ŝ) is the second order Taylor series of f(xk + ST
k ŝk) around xk. Compute ŝk by

approximately minimising (1) such that

m̂k (ŝk) ≤ m̂k (0) and ∥∇m̂k (ŝk)∥2 ≤ κT
∥∥ST

k ŝk
∥∥2
2
. (2)

Compute a trial step

sk = wk(ŝk) = ST
k ŝk, (3)
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2. Check sufficient decrease
Check sufficient decrease as defined by the condition

f(xk)− f(xk + sk) ≥ θ [q̂k(0)− q̂k(ŝ)] , (4)

3. Update the parameter αk and possibly take the trial step sk
If (4) holds, set xk+1 = xk + sk and αk+1 = min {αmax, γ2αk} [successful iteration].
Otherwise, set xk+1 = xk and αk+1 = γ1αk [unsuccessful iteration].
In either case, let k = k + 1.

Remark 1 Two main strategies for computing ŝk by minimising (1) are given in [2], either re-
quiring a factorisation of Sk∇2f(xk)S

T
k (in a Newton-like algorithm), or repeated matrix-vector

products involving Sk∇2f(xk)S
T
k (in a Lanczos-based algorithm). Therefore, in addition to re-

quiring only projected derivatives, R-ARC also significantly reduces the computation of the trial
step by reducing the dimension of the linear systems involved in its solution from d × d in the full
dimensional case, to l × l in the subspace case.

3. Worst-case complexity of the R-ARC algorithm

The main result of this paper shows that for suitably generated matrices Sk, R-ARC produces an
iterate xk with ∥∇f(xk)∥2 ≤ ϵ in N = O

(
ϵ−3/2

)
iterations, with high probability. The true

iterations of R-ARC are iterations such that Sk successfully captures key properties of the iterates1.

Definition 2 Let ϵS ∈ (0, 1), Smax > 0. Iteration k is (ϵS , Smax)-true if

∥SkMkzk∥22 ≥ (1− ϵS) ∥Mkzk∥22 , for all zk ∈ Rd+1 (5)

∥Sk∥2 ≤ Smax, (6)

where2 Mk =
[
∇f(xk) ∇2f(xk)

]
∈ Rd×(d+1).

Theorem 3 Let δS ∈ (0, 1), ϵS ∈ (0, 1), Smax > 0 with δS < c
(c+1)2

, where c is defined in

Algorithm 1. Suppose that Sk satisfies the following condition: for any x̄k ∈ Rd, k = 1, 2, . . . , we
have P (Tk|xk = x̄k) ≥ 1− δS , where P (T0) ≥ 1− δS and

Tk =

{
1, if iteration k is (ϵS , Smax)-true
0, otherwise.

(7)

Let δ1 ∈ (0, 1) such that g(δS , δ1) =
[
(1− δS)(1− δ1)− 1 + c

(c+1)2

]−1
> 0. Suppose that f is

twice continuously differentiable, with an LH -Lipschitz continuous Hessian. Run Algorithm 1 for
minimizing f for N iterations. Then, for any ϵ ∈ (0, 1), if N = O

(
ϵ−3/2max

(
L
3/2
H , S

3/2
max

))
, we

have

P
(
min
k≤N

∥∇f(xk)∥2 ≤ ϵ

)
≥ 1− e−

δ21(1−δS)N

2 .

1. There is an interplay between the success probability of Sk and the constant c in Algorithm 1, as we shall see.
2. Note that all vectors are column vectors.
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A few remarks are in order. Firstly, we note that our complexity result holds with high probabil-
ity, namely, it provides (lim inf) global convergence almost surely. Secondly, the convergence result
only guarantees at least one past iterate satisfying ∥∇f(xk)∥2 ≤ ϵ. However the non-monotonicity
of the gradient is alleviated because R-ARC produces monotonically decreasing f(xk), due to Step
2, and so the function value f(xN ) is at least as small as a function value with a small gradient.
Finally, the true assumptions on Sk are satisfied if Sk is drawn from a distribution known as an
oblivious subspace embedding, defined below.

Definition 4 (ϵS-subspace embedding [9]) An ϵS-subspace embedding for (the column subspace
of) a matrix H ∈ Rd×k is a matrix S ∈ Rl×d such that

(1− ϵ)∥y∥22≤ ∥Sy∥22≤ (1 + ϵ)∥y∥22, for all y ∈ Y = {y = Hz : z ∈ Rk}. (8)

Oblivious subspace embeddings are matrix distributions such that given a(ny) column subspace of
vectors in Rn, a random matrix drawn from such a distribution is an embedding for these vectors
with high probability. We let 1− δ̃ ∈ [0, 1] denote a(ny) success probability of an embedding.

Definition 5 (Oblivious subspace embedding [7, 9]) A distribution S on S ∈ Rm×n is an (ϵS , δ̃)-
oblivious subspace embedding if, given a fixed/arbitrary matrix H ∈ Rd×k, a matrix S from the
distribution is an ϵS-subspace embedding for H, with probability at least 1− δ̃.

Using the above definitions of embeddings, we have that if Sk are drawn from an oblivious subspace
embedding distribution for the matrices M ∈ Rd×(d+1) with rank at most r + 1, where r is the
maximum rank of the Hessian of the iterates ∇2f(xk), then (5) is satisfied with high conditional
probability at each iteration3. The other condition for true iterations, namely, (6), is satisfied (with
high probability) by a variety of random matrices. We give an example of distributions from which
Sk may be drawn that satisfy the assumptions in Theorem 3. We note that many other matrice
ensembles are oblivious subspace embeddings and probabilistically bounded above, see [8].

4. R-ARC with scaled Gaussian sketching matrices

A choice for Sk is the scaled Gaussian matrix, defined below.

Definition 6 We say S ∈ Rl×d is a scaled Gaussian matrix if Sij are independently distributed as
N(0, l−1).

The following two properties of Gaussian matrices are well known.

Lemma 7 (Theorem 2.3 in [9]) Let ϵS ∈ (0, 1) and S ∈ Rl×d be a scaled Gaussian matrix with

l = O
(
ϵ−2
S r log

(
1

δ
(1)
S

))
Then the distribution of S is an (ϵS , δ

(1)
S )-oblivious subspace embedding

for d× (d+ 1) matrices M with ranks at most r + 1.

Lemma 8 Let S ∈ Rl×d be a scaled Gaussian matrix. Then with probability 1− δ
(2)
S ,

∥S∥2 ≤ 1 +

√
d

l
+

√√√√2 log
(
1/δ

(2)
S

)
l

.

3. However Sk being drawn from an oblivious subspace embedding is not a necessary condition for the assumptions in
Theorem 3 to hold.
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Thus, if Sk is a scaled Gaussian matrix, the conditions in Theorem 3 hold with δS = δ
(1)
S + δ

(2)
S ,

by taking a union bound, with Smax given by in the last lemma. We note that l, the dimension
of the subspace, does not depend on d but is proportional to r, the rank of the Hessian. Thus, for
any meaningful dimensionality reduction to take place, it is essential that the analysis of R-ARC is
applied to an objective f with low-rank Hessians. However, in [8], an alternative condition on the
Hessian is derived, namely, the Hessian is highly sparse except for a few row entries (that is, the
function f only varies significantly over a few directions).

Comparison with related work We achieve the same O
(
ϵ−3/2

)
convergence rate as in [1], which

is optimal for non-convex optimization using second order models [4], and matches the determin-
istic ARC method. A key difference between our work and [1] is the definition of true iterations.
Instead of Theorem 2, [1] define true iterations as those iterations that satisfy

∥∇f(xk)−∇mk(sk)∥2 ≤ κg ∥sk∥22 (9)

for some constant κg > 0.
This difference leads to potentially-distinct applications of the two frameworks. To construct the

model mk, [1] proposed to use sampling with adaptive sample sizes for problems having the finite
sum structure (f =

∑
i fi), or to use finite differences in the context of derivative-free optimisation.

However, without other assumptions, even just in order to obtain condition (9), one may need a
sample size that may be impractically large. By contrast, in our framework, the sketching size is
fixed, of order 1, and even then, true iterations occur sufficiently frequently for scaled Gaussian
matrices (and indeed for other random embeddings).

Inexact local models constructed by subsampling for sums of functions have also been proposed
for cubic regularization and other Newton-type methods in [5, 11–13]. Our emphasis here is related
to reducing specifically the dimension of the variable domain (rather than the observational space).

5. Conclusion

In this paper we present a random subspace variant (R-ARC) of the adaptive cubic regularization
algorithm for nonconvex problems. We show that under embedding assumptions for the random
subspace, R-ARC achieves the same worst case convergence rate as the full-space variant. We note
that in [8], we also showed R-ARC converges to a second order critical point with the same worst
case convergence rate as the full-space variant.
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