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Abstract
There has been growing interest in high-order tensor methods for nonconvex optimization in ma-
chine learning as these methods provide better/optimal worst-case evaluation complexity, stability
to parameter tuning, and robustness to problem conditioning. The well-known pth-order adaptive
regularization (ARp) method relies crucially on repeatedly minimising a nonconvex multivariate
Taylor-based polynomial sub-problem. It remains an open question to find efficient techniques to
minimise such a sub-problem for p ≥ 3.

In this paper, we propose a second-order method (SQO) for the AR3 (ARp with p = 3) sub-
problem. SQO approximates the special-structure quartic polynomial sub-problem from above and
below by using second-order models that can be minimised efficiently and globally. We prove that
SQO finds a local minimiser of a quartic polynomial, but in practice, due to its construction, it can
find a much lower minimum than cubic regularization approaches. This encourages us to continue
our quest for algorithmic techniques that find approximately global solutions for such polynomials.

1. Motivation and Problem Set-up
The evaluation complexity of finding an approximate local minimum for a nonconvex function has
been of interest for several decades [23]. Recent works [1, 5, 6, 15] have shown that some optimiza-
tion algorithms have better worst-case evaluation complexity when using higher-order derivative
information of the objective function together with regularization techniques.

In this paper, we consider the unconstrained nonconvex optimization problem, minx∈Rn f(x)
where f : Rn → R is p-times continuously differentiable and bounded below. Since optimizing a
high-dimensional function f is often challenging, we will approach the problem using a derivative-
based method. Namely, we find a polynomial function mp(x, s) that approximates f(x + s) at
x = xk. We then update xk iteratively by sk := mins∈Rn mp(xk, s) and xk+1 := xk + sk until we
reach the approximate local minimum of f , i.e. ∥∇f(xk)∥ ≤ ϵ1 and λmin

(
∇2f(xk)

)
≥ −ϵ2.

The model mp is based on Taylor expansions. The pth-order Taylor expansion of f(xk + s) at
xk is Tp(xk, s) := f(xk) +

∑p
j=1

1
j!∇

jf(xk)[s]
j , where ∇jf(xk) ∈ Rnj

is a jth-order tensor and
∇jf(xk)[s]

j is the jth-order derivative of f at xk along s ∈ Rn. To ensure the method converges
globally from an arbitrary starting point to first/second-order critical points, we add an adaptive
(p+ 1)-power regularization term to Tp. This gives us the pth-order regularized Taylor model,

mp(xk, s) = Tp(xk, s) +
σk

p+ 1
∥s∥p+1

2 (1.1)

where σk > 0 is adjusted adaptively to ensure progress towards optimality over the iterations. The
case of p = 1 gives the steepest descent model and the case of p = 2 gives a Newton-like model; in
this paper, we focus on the case of p ≥ 3. This construction correspond to the well-known adaptive
regularization algorithmic framework ARp [1, 5, 6]. Under Lipschitz continuity assumptions on
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∇pf(x), ARp methods require no more than O
(
ϵ
− p+1

p−q+1

)
evaluations of f and its derivatives to

compute a q-th order minimizer to an accuracy of ϵ, where q ∈ {1, 2}. More details can be found in
Appendix A and in [1, 5, 7, Ch 4].

These results show that to achieve the same criticality conditions, the evaluation complexity
bound improves as we increase the order p. Consequently, an efficient high-order method (such
as ARp) is crucial for a fast and accurate algorithm that optimizes high-dimensional nonconvex
functions. Moreover, [2] proves that ARp has the optimal complexity for the pth-order methods.
In the case of p = 2, we obtain the AR2 method (also known as Adaptive Cubic regularization,
ARC1). AR2 requires at most O

(
max{ϵ−3/2

1 , ϵ−3
2 }

)
evaluations of f and its derivatives to find

the local minimum [3, 4]. Under a similar condition, many trust-region (TR) algorithms require at
most O

(
max{ϵ−2

1 , ϵ−3
2 }

)
evaluations. For instance, in the case of p = 3, the worst case evaluation

complexity for the AR3 model is O
(
max{ϵ−4/3

1 , ϵ−2
2 }

)
. This means that the AR3 model achieves

a better worst-case performance than methods that use only first/second derivatives. The superior
theoretical complexity result of AR3 motivates us to find a algorithmic implement of it. Note that
these complexities do not include the cost of minimising the sub-problem (1.1).

In practice, an efficient ARp algorithm relies critically on iteratively minimising (1.1). AR2 is
the first non-trivial problem in the family that requires an efficient solver for the sub-problem. The
sub-problem m2 has been widely researched as part of the (adaptive) cubic regularization frame-
work [3, 8, 10, 13, 19]. There are many scalable methods for solving the AR2 sub-problems [3, 9,
11, 12]. Specifically, [3] gives an iterative algorithm for finding the global minimizer of m2 in both
convex and nonconvex cases.

In the case of p = 3, m3 is generally a nonconvex quartic regularized multivariate polyno-
mial with respect to s. How to efficiently minimize m3 remains an open question and will be the
main topic of our paper. Following [19], Nesterov has proposed a series of second-order meth-
ods for minimising a convex m3 model. Under the convexity assumption, the additional relative
smoothness properties of the third-order tensor models allow the use of Bregman gradient methods
to approximately minimise the m3 model [15]. The first results of this type were based on the dif-
ference approximation of the third-order tensor term [17], while the other papers [14, 16] employ
the framework of the high-order proximal-point operators. More recently, Nesterov gave a linearly
convergent second-order method for minimizing convex quartic polynomials [18]. In this method,
he estimated the third-order tensor term by a combination of the second and the fourth derivatives.
In this paper, we extend this idea to nonconvex functions and nonconvex AR3 sub-problems.

Minimising the AR2 sub-problem: We first review a generalized form of the m2 model and
an algorithm to minimize it. In the rest of the paper, let xk be fixed and we drop the k subscript.
Consider the second-order model with rth-power of regularization,

mr
2(s) = f̃0 + g̃T [s] +

1

2
H̃[s]2 +

1

r
σ∥s∥r2, (1.2)

where f̃0, g̃ and H̃ denote functions and derivative values at any given point x̃. Clearly, when r = 3,
(1.2) gives the ARC sub-problem. When r = 4, m4

2(s) = f̃0 + g̃T [s] + 1
2H̃[s]2 + 1

4σ∥s∥
4
2. Notice

that m3, the model that we are focused on, has the same regularization power as m4
2(s), but m4

2(s)
does not have the third-order tensor term. The third derivative of a function is not an indepen-
dent characteristic. It can be estimated by a combination of the second and the fourth derivatives.

1. In this paper, we also refer AR2 as ARC, ARC = AR2.
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The idea of our proposed method, SQO, first bounds the third-order tensor term of m3(s) using a
second-order term and quartic regularization term. Then, SQO minimizes m3(s) using a sequence
of second-order models with quartic regularization (in the form of m4

2(s)). Theorem 1 summarizes
the necessary and sufficient optimality conditions for the global minimizer of m4

2(s).

Theorem 1 (Theorem 8.2.8 [7]) Let r ≥ 3, any global minimizer of mr
2(s), s∗, satisfies (H̃ +

λ∗In)s∗ = −g̃, where In ∈ Rn×n is the identity matrix, λ∗ ≥ 0 , H̃ + λ∗In ⪰ 0, and λ∗ =
σ∥s∗∥r−2. If H̃ + λ∗In is positive definite, then s∗ is unique.

Theorem 1 converts the problem of finding the global minimum of mr
2 into a problem of solving

a nonlinear equation paired with a matrix system. Broadly speaking, we use the matrix system
(H̃+λ∗In)s∗ = −g̃ to express s∗ as a function of λ∗, such that s∗ = s(λ∗). The nonlinear equation
is re-written as λ∗ = σ∥s(λ∗)∥r−2

2 . Due to non-linearity, λ∗ does not have an explicit expression in
general, but we can obtain an approximate solution via the Newton method for root finding. More
details of the algorithm can be found Ch. 8 [7] where a literature survey of various approaches is
also given.

2. Minimising the AR3 Sub-problem via Sequential Quadratic Optimization (SQO)

SQO is an iterative algorithm that solves the AR3 sub-problem by generating {s(i)}i≥0. We prove
that s(i+1) converges to sk which is a local minimizer of m3(xk, s) for every major iteration k of
AR3. Since SQO solves the sub-problem with k fixed, we drop the k subscript and write the third-
order model with quartic regularization as m3(s) = f0 + gT [s] + 1

2H[s]2 + 1
6T [s]

3 + 1
4σ∥s∥

4
2,

where f0 = f(xk), g = ∇f(xk), H = ∇2f(xk), and T = ∇3f(xk). The 4th-order Taylor
expansion of m3(s

(i) + s) at s(i) is

M(s(i), s) := m3(s
(i)) +∇sm3(s

(i))T s+
1

2
sT∇2

sm3(s
(i))s+

1

6
∇3

sm3(s
(i))[s]3 +

σ

4
∥s∥42.

Since m3(s) is a 4th-degree multivariate polynomial, the Taylor expansion is exact, such that
M(s(i), s) = m3(s+ s(i)), and mins∈Rn m3(s) = mins∈Rn M(s(i), s).

The key idea for SQO is that we use a quadratic term with a quartic regularization term to
approximate the third-order tensor term, such that

sTH−(s
(i))s+ d−∥s∥42 ≤

1

6
∇3

sm3(s
(i))[s]3 ≤ sTH+(s

(i))s+ d+∥s∥4, (2.1)

where H± ∈ Rn×n, d± ∈ R are specifically chosen and details are in Section 2.2. Let

M±(s
(i), s) := m3(s

(i)) +∇sm3(s
(i))[s] +

[
1

2
∇2

sm3(s
(i)) +H±(s

(i))

]
[s]2 +

(σ
4
+ d±

)
∥s∥42,

and d± ≥ 0, then we can obtain a bound for m3, such that M−(s
(i), s) ≤ m3(s) = M(s(i), s) ≤

M+(s
(i), s). Moreover, we can deduce that

min
s∈Rn

M−(s
(i), s) ≤ min

s∈Rn
m3(s) ≤ min

s∈Rn
M+(s

(i), s). (2.2)

It is worth noting that M± is a model with quadratic order and quartic regularisation. M± has no
third-order tensor term and is of the same form as m4

2 model in (1.2). As explained in the previous
section, we have an algorithm to find the global minimum for problems in the form of the m4

2

model. SQO uses this algorithm and optimizes the regularized quartic polynomial model (AR3) by
a sequence of second-order model with quartic regularization.
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2.1. Algorithms and Main Theorem

SQO (Algorithm 1) allows for both convex and nonconvex polynomial/iterations. The convergence
result and complexity analysis are given in Theorem 2 and in its remark.

Algorithm 1 Sequential Quadratic Optimization (SQO)

Initialization: Choose s(0) = 0 and compute H+(s
(0)) ∈ Rn and d+ ∈ R.

ith iteration (i ≥ 0): If ∥∇sm(s(i))∥2 > TOL or ∥∇2
sm(s(i))∥2 < −TOL,

s(i+1) = argmins∈Rn M+(s
(i), s).

Figure 1 is a simple illustration of SQO for n = 1. Note that M− is bounded below on each
iteration2. SQO gives a strict descent in m3(s

(i)) in each iteration, such that m3(s
(0)) > m3(s

(1)) >
. . . In nonconvex iterations, SQO usually gives a particularly large descent in m3(s

(i)). We give an
explanation for these two properties of SQO in Theorem 2.

Figure 1: Minimizing 10s− 50s2 + 5s3 + 5s4. m3, M+, M− plotted in black, green and red respectively.

Theorem 2 Assume M+ is constructed as described in Section 2.2 and s(i) is computed by Algo-
rithm 1. Then, m3(s

(i)) is strictly decreasing with i and converges to a local minimum of m3(s).
In non-convex iterations, if we construct M+ using hB-SQO and assume that ∥∇sm(s(i))∥2 > ϵ,
λmin

(
∇2

sm(s(i))
)
< −ϵ and λmax

(
∇2

sm(s(i))
)
̸= 0. Then, the iterations satisfy the complexity

bound
m3(s

(i))−m∗ ≤
(
m3(s

(0))−m∗

)(
1− (i+ 1)ĉϵ4/3

)
where m∗ = mins∈Rn m3(s). ĉ is a problem-dependent positive constant that depends on σ,
λmin

(
∇2

sm(s(i))
)
, λmax

(
∇2

sm(s(i))
)
, and maxu∈Rn,∥u∥2=1

∣∣∇3
sm3(s

(i))[u]3
∣∣.

The complexity result for convex iterations is given next and a sketch of proof is given in Appendix
B.

Remark on Convex Iterations: [18] proves the result for convex quartic regularized polyno-
mials. In the convex case, each iteration satisfies m3(s

(i))−m∗ ≤
(
m3(s

(0)
)
−m∗) (1− α)k where

α > 0.193.

2.2. Upper and Lower bounds

We introduce two types of upper and lower bounds for m3(s) which use the information from
gradient and from Hessian, respectively. Let Lg and LT be the (local) Lipschitz constant for m3(s).
The Gradient Bound SQO (gB-SQO) is

M+(s
(i), s) = m3(s

(i))+∇sm3(s
(i))T s+sT

[
(
1

2
− 1

3τ
)∇2

sm3(s
(i))+

Lg

3τ
In

]
s+

(
σ

4
+

τLT

12

)
∥s∥42

2. The lower bound of M− is −2× 107 which is outside the range of the plot for the 2nd and 3rd iteration.
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where τ > 1 is a constant. Let χ1 := −λmin[∇2
sm3(s

(i))]. The Hessian Bound SQO (hB-SQO) is

M+(s
(i), s) = m3(s

(i)) +∇sm3(s
(i))T s+ sT

[
1

2
∇2

sm3(s
(i)) + a+χ1In

]
s+

(σ
4
+ b+

)
∥s∥42

where a+ and b+ are constants depending on χ1, σ and λmax[∇3
sm3(s

(i))].

2.3. Preliminary Numerical Illustrations

Numerical Set-up: The test quartic regularised polynomials are nonconvex. H ∈ Rn×n is a sym-
metric, normally distributed matrix. T ∈ Rn×n×n is a symmetric, uniformly distributed third-order
tensor. The stopping criteria is ∥∇sm(s(i))∥2 < TOL and λmin

(
∇2

sm(s(i))
)
> −TOL where

TOL = 10−5 unless otherwise stated.
SQO vs other solvers: (Table 1) SQO performs much better than MATLAB fminsearch

(simplex search) and MATLAB fminunc (quasi-newton) in terms of functions and derivatives
evaluation count and the size of the local minimum found. SQO finds a local minimum for n = 2
to n = 300 while fminsearch fails for n > 5 and fminunc produces inaccurate results for
n > 20. SQO also locates a lower local minimum than ARC for large-size problems (n > 50). But
it takes more function evaluations than ARC.

Stability and Accuracy of SQO: (Figure 2) SQO finds a highly accurate local minimum, giving
a tolerance of 10−10 for problem size n = 50. SQO is stable for ill-conditioned quartic regularized
problems (i.e. m3 with ill-conditioned Hessian and random uniformly distributed tensor).

gB-SQO vs hB-SQO: The two solvers require similar function evaluations in finding a local
minimum. gB-SQO usually produces a lower local minimum than hB-SQO (Table 1). Both methods
guarantees function decrease in every iteration (Appendix C).

Table 1: Comparison of SQO and other solvers

Minimum values attained Function evaluation counts
Dimension (n) 2 20 50 75 100 300 2 20 50 75 100 300
fminsearch -3.9 - - - - - 115 - - - - -
fminunc -3.9 -439 - - - - 33 733∗ - - - -

ARC -3.9 -439 −1.11 ∗ 105 −8.3 ∗ 105 −6.9 ∗ 106 −1.5 ∗ 1010 8 13 13 14 15 19
gB-SQO -3.9 -439 −1.14 ∗ 105 −1.0 ∗ 106 −1.1 ∗ 107 −1.8 ∗ 1010 20 43 60 85 77 97
hB-SQO -3.9 -439 −1.13 ∗ 105 −8.4 ∗ 105 −8.1 ∗ 106 −1.8 ∗ 1010 20 44 57 68 76 79

− represents max.iteration (> 5000) exceeded. Results avg. over 75 problems. Tolerance not achieved, ∗∥∇sm3(s(i))∥ = 2 ∗ 10−4.

Figure 2: Stability and accuracy analysis

Results avg. over 25 problems. At TOL = 10−11, one problem exceed max. iter for all three solvers.

3. Extensions and Conclusion
In this paper, we proposed a second-order method (SQO) that minimizes a nonconvex quartic regu-
larized polynomial (i.e. the AR3 sub-problem) to high accuracy and high numerical stability. Our
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preliminary numerical results show that SQO can locate a much lower minimum than cubic regular-
isation approaches. There is a vast literature in multivariate polynomial optimization that explores
global descent algorithms [20–22]. In future work, we will explore the properties of the tensor term
at a local minimum and extend SQO to provably find the approximate global minimizer for AR3.

Acknowledgments: This work was supported by the Hong Kong Innovation and Technology Com-
mission (InnoHK Project CIMDA).
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[12] José Mario Martı́nez. Local minimizers of quadratic functions on euclidean balls and spheres. SIAM Journal on Optimization, 4
(1):159–176, 1994.
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Appendix A. Complexity Theory and ARp Algorithm
Assumption: f : Rn → R is p-times continuously differentiable and bounded below flow. The
pth-derivative of f is globally Lipschitz continuous. That is, there exists a constant Lp ≥ 0, such
that ∥∇pf(x)−∇pf(y)∥ ≤ (p− 1)!Lp∥x− y∥2 for all x, y ∈ Rn.

Theorem 3 (Theorem 3.6 [6]) Let p ≥ 2, f ∈ Cp,1(Rn). Then, ARp requires at most⌈
κ1,2 · (f(x0)− flow) ·max

[
ϵ
− p+1

p

1 , ϵ
− p+1

p−1

2

]
+ κ1,2

⌉
(A.1)

function and derivative evaluations to reach the approximate local minimum with first and second-
order criticality as ∥∇f(xk)∥2 ≤ ϵ1, λmin(∇2f(xk)) ≥ −ϵ2.

Algorithm 2 Adaptive pth-order Regularization Model: ARp
Compute sk such that mp(sk) < f(xk), ∥∇smp(sk)∥2 ≤ θ1∥sk∥p2 and λmin(∇2mp(sk)) ≥
−θ2∥sk∥p−1

2 .
Compute ρk = f(xk)−f(xk+sk)

f(xk)−Tp(xk,sk)
.

Update xk: xk+1 := xk + sk if ρk > η = 0.1, or xk+1 := xk otherwise.
Update σk: σk+1 =

σk
γ1

= 2σk when ρk < η; else σk+1 = max{γ2σk, σmin} = max{1
2σk, σmin}.

Appendix B. Sketch of Proof for Theorem 2
Sketch of proof: The key step is that we use M− to safeguard the function value monotonically
decreases. Using M−, we form an adjustable nonconvex bound for m3,

M−,α(s
(i)) := m3(s

(i)) +∇sm3(s
(i))T s+ αH−(s

(i))[s]2 + α−3
(σ
4
− d−

)
∥s∥42,

where 0 < α < 1. For a fixed s(i), M−,α increases as α → 0. We prove that there exists a α̂ > 0
such that mins∈Rn M−(s

(i)) < mins∈Rn m3(s) < mins∈Rn M+(s
(i)) < mins∈Rn M−,α̂(s

(i)).
Technical analysis on α̂, H± and d± gives the complexity bound. □

Appendix C. Contraction Factor and Rate of Convergence for SQO

Figure 3: The error is calculated by ei := m3(s
(i))−m∗. The contraction factor is ei+1/ei. Problem

size is n = 100.
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