
HOOML2022: Order up! The Benefits of Higher-Order Optimization in Machine Learning

How a Small Amount of Data Sharing Benefits Higher-Order
Distributed Optimization and Learning

Mingxi Zhu MINGXIZ@STANFORD.EDU

Yinyu Ye YYYE@STANFORD.EDU

Stanford, CA 94305, United State

Abstract
Distributed optimization algorithms have been widely used in machine learning, especially under
the context where multiple decentralized data centers exist, and the decision maker is required
to perform collaborative learning across those centers. While distributed optimization algorithms
have the merits in parallel processing and protecting local data security, they often suffer from slow
convergence compared to centralized optimization algorithms. This paper focuses on how a small
amount of data sharing benefits distributed higher-order optimization algorithms in machine learn-
ing. Specifically, we consider how data sharing could benefit distributed multi-block alternating
direction method of multipliers (ADMM) and preconditioned conjugate gradient method (PCG).
These algorithms are commonly known as algorithms in-between the first and second order meth-
ods, and we show that data sharing could hugely boost the convergence speed. Theoretically, we
prove that a small amount of data sharing leads to improvements from near-worst to near-optimal
convergence rate when applying ADMM and PCG methods to machine learning tasks. A side
theory product is the tight worst-case bound of linear convergence rate for distributed ADMM
in linear regression. We further propose a meta randomized data-sharing scheme and provide its
tailored applications in multi-block ADMM and PCG methods in order to enjoy both the benefit
from data-sharing and the efficiency from parallel computing. From numerical evidence, we are
convinced that our algorithms provide good quality estimators in both least square and logistic
regressions within much fewer iterations by only sharing a small amount of pre-fixed data, while
purely distributed algorithms may take hundreds more times of iterations to converge. We hope that
the discovery in paper will encourage even a small amount of data sharing among different regions
to combat difficult global learning problems.
Keywords: Distributed Learning; Distributed Higher-Order Optimization; Data Sharing

1. Introduction

Distributed optimization algorithms have been widely used in large scale machine learning prob-
lems ([9], [2], [25]). However, in practice, distributed optimization algorithms often suffer from
slow convergence ([12], [24]). In this paper, we mainly focus on the more advanced distributed op-
timization algorithms that utilize the higher-order information of the objective function, including
the multi-block distributed Alternating Direction Method of Multipliers (ADMM) ([5, 9, 11, 13, 15,
17, 19, 22, 23, 29]) and preconditioned conjugate gradient methods (PCG) ([1, 6, 18, 20, 21]). These
algorithms are known as the algorithms in-between the first order gradient descent method and the
second order newton method. Our work aims at providing theoretical answers to the following
questions: why higher-order distributed optimization algorithms can sometimes have unsatisfactory
performance when applied to machine learning problems, what kind of data structure leads to such
slow convergence, and when data-sharing/randomization can improve the convergence speed. With
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the theoretical guidance, this paper provides a meta data-sharing algorithm that only requires a small
amount of pre-fixed sampled data to build a global data pool. We show that only a small amount of
data share is sufficient to improve the convergence speed. Moreover, by tailoring the higher-order
algorithms to utilizing the global data pool, we are able to enjoy both the benefit from data sharing
that leads to faster convergence rate, and from parallel computing by keeping the main structure of
the optimization algorithms in a distributed manner. In this paper, we consider the following dis-
tributed learning problem. We assume there are b centers, each of the center possesses si numbers
of observations. We denote (xi,j , yi,j) ∈ (R1×p,R) the jth data pair associate with ith center,
with data center i possessing Xi = [xi,1; . . . ;xi,si ] ∈ Rsi×p, yi = [yi,1; . . . ; yi,si ] ∈ Rsi×1,
and i ∈ {1, . . . , b}. The decision maker tries to find β ∈ Rp that minimizes the global loss
function F ((X,y);β) =

∑b
i=1

∑si
j=1 f((xi,j , yi,j);β), where in this work, we focus on the least

square regression f((xi,j , yi,j);β) = ∥xi,jβ − yi,j∥22 and logistic regression f((xi,j , yi,j);β) =
log(1 + exp(−yi,jxi,jβ)). We provide both the theory and the numerical evidence to show the
benefit of data sharing in higher order distributed learning algorithms. Due to the page limit, the nu-
merical results are provided in the supplementary materials with open source code available online1.

2. Theory

2.1. Distributed Multi-block ADMM Method

Consider the following classic formulation to solve the distributed problem with ADMM by intro-
ducing auxiliary βi for each local center i

min
b∑

i=1

si∑
j=1

f((xi,j , yi,j);βi)

s.t. βi − β = 0 ∀ i = 1, . . . , b

(1)

To apply the primal distributed ADMM algorithm, the decision maker solves the following relaxed
augmented Lagrangian. Let λi be the dual with respect to the constraint βi − β = 0, and ρp the
step size to the primal distributed ADMM. The augmented Lagrangian is thus given by

L(βi,β,λi) =

b∑
i=1

si∑
j=1

f((xi,j , yi,j);βi) +

b∑
i=1

λT
j (βi − β) +

b∑
i=1

ρp
2
(βi − β)T (βi − β) (2)

The primal distributed multi-block ADMM algorithm is given by Algorithm (1). Specifically, when
applying to least square regression, the problem becomes a quadratic optimization with linear con-
straints. Without loss of generality, we assume the data matrix is normalized.

Assumption 1 The regressor matrix X is normalized by its Frobenius norm ∥X∥F , and the small-
est and largest eigenvalue of XTX, q and q̄ are fixed, with XT

i Xi ≻ 0 for all i ∈ {1, . . . , b}.

Before introducing the main theorem, we provides an illustrating example on showing how data
structure influences the convergence rate. Consider a simple case with feature dimension p = 1,

1. https://github.com/mingxiz/data_sharing_matlab
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Algorithm 1: Primal Distributed ADMM
Initialization: t = 0, step size ρp ∈ R+, βt ∈ Rp, λt,i ∈ Rp, βt,i ∈ Rp for all i ∈ {1, . . . , b},
and stopping rule τ ;

while t ≤ τ do
Each data center i updates βt+1,i in parallel by
βt+1,i = argminβi∈Rp

∑si
j=1 f((xi,j , yi,j);βi) +λT

t,i(βi −βt) +
ρp
2 (βi −βt)

T (βi −βt)
Decision maker updates
βt+1 =

1
b

∑b
i=1 βt+1,i +

1
bρp

∑b
i=1 λt,i, λt+1,i = λt,i + ρp(βt+1,i − βt+1)

end
Output: βτ as global estimator

number of centers b = 2 and step size ρp = 1. In the first scenario, the original model matrix X̃i

and the model matrix after normalizing by Frobenius norm, Xi are given by

X̃1 =

[
0.99
0.01

]
, X̃2 =

[
0.9
0.1

]
, X1 =

[
0.7379
0.0075

]
, X2 =

[
0.6708
0.0745

]
(3)

Here, as feature dimension p = 1, q̄ = q = 1. If we directly applying Algorithm 1, the linear
convergence rate, which is also the spectrum of the linear mapping matrix, is given by 0.6661.
However, if we just swap the data between data center 1 and 2:

X̃1 =

[
0.99
0.9

]
, X̃2 =

[
0.01
0.1

]
, X1 =

[
0.7379
0.6708

]
, X2 =

[
0.0075
0.0745

]
(4)

The convergence rate of applying Algorithm 1 now becomes 0.5264. In fact, one could show that,
for primal distributed ADMM the worst case convergence rate is 0.6667 and the best convergence
rate one could possibly achieve is 0.5 under primal distributed ADMM with number of data centers
b = 2 and feature dimension p = 1. Here, data structure significantly influences on the convergence
rate of primal distributed ADMM – swapping one entry of data leads to the improvement from
near-worst to near-optimal convergence rate. Generally, one could show that

Theorem 2 For ρp > q̄, the linear convergence rate of distributed ADMM is upper bounded by
bρp

bρp+q , and the worst-case bound is achieved when XT
i Xi = XT

j Xj for all i, j ∈ {1, . . . , b}.

Theorem 2 provides the tight worst-case bound on the convergence rate of distributed ADMM. To
our knowledge, this is the first result on providing how data structure influences the convergence
rate, and a tight worst-case bound on the convergence rate of primal distributed ADMM with fixed
model matrix conditioning q̄ and q. The detailed proof is provided in appendix. The sketch of proof
is that, we first show that when XT

i Xi = XT
j Xj , the convergence rate of distributed ADMM is

bρp
bρp+q . To show that such convergence rate attains the upper bound is harder. We first show that the
eigenvalue of Mp is real, which is not trivial as Mp is non-symmetric. And one could apply the
matrix Jensen equality to further prove Theorem 2. The higher level intuition lies in the intrinsic
updating rules of distributed ADMM that involves taking average of local auxiliary variables when
updating the global variable β and the dual variables λi. And updating the local auxiliary variables
is based on taking the inverse of the local covariance matrices. When XT

i Xi and XT
j Xj are closer,
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averaging the inverse of the local covariance matrices provide smaller momentum on pushing the
dual variables to converge to the KKT point.

With the previous theoretical guidance, we further show the benefit of higher-order optimization
algorithm compared with gradient method. The following proposition shows that for a wide range
of step-size choice, distributed ADMM converges faster than gradient descend method.

Proposition 3 For ρp ∈ (0, s1) ∪ (s2,∞), distributed multi-block ADMM converges faster than

gradient descend method, where s1 = min
(
1
q − q̄, q1

)
, s2 =

2b−q̄q+
√

4b2+(q̄q)2

2bq̄ , where q1 is the

smallest eigenvalue among all XT
i Xi.

2.2. Preconditioned Conjugate Gradient Method

Consider the case where we have two data centers, both possess s observations with feature dimen-
sion p = 2. Data center 1 possess (X1,y1), and X1 = [x1

1; . . . ;x
1
i ; . . . ;x

1
s] with x1

i = 1√
s
(1, ξi).

Data center 2 possess (X2,y2), and X2 = [x2
1; . . . ;x

2
j ; . . . ;x

2
b ] with x2

j = 1√
s
(1, ξj). ξi and ξj

are i.i.d. Gaussian random variables ϵ1N(0, 1) and ϵ2N(0, 1). In order to perform least square
regression, one need to solve the linear system of

∑b
i=1Ai = b, where

A1 = XT
1 X1 =

[
1 a1
a1 b1

]
A2 = XT

1 X1 =

[
1 a2
a2 b2

]
b =

b∑
i=1

XT
i yi (5)

with a1 a2 following gaussian distribution ϵ1
b N(0, 1), ϵ2

b N(0, 1) respectively, and b1, b2 following

chi-squared distribution ϵ21
b2
χb and ϵ22

b2
χb respectively. As the number of observations s increases, A1

and A2 converges to

A1 =

[
1 0
0 ϵ21

]
A2 =

[
1 0
0 ϵ22

]
(6)

Let ϵ2 = 1
ϵ1

, and take ϵ1 to be small enough, one have without data sharing, the local preconditioning
matrix at data center 1 is given by H1 = (XT

1 X1)
−1, and the conditioning number of H1A is

ϵ2+1
2ϵ2

. And the local preconditioning matrix at data center 2 is given by H2 = (XT
2 X2)

−1, and the
conditioning number of H2A is 2

1+ϵ2
. Simply aggregate the local preconditioning matrix provides

Hlocal = H1 + H2 the conditioning number of HlocalA is (ϵ2+1)2

4ϵ2
. However, with any linear

fraction amount of data share, if we construct local preconditioning matrix with global data share
as Hg

i = (1bX
T
i Xi +

∑
j ̸=i

s
ri
XT

σi
Xσi)

−1, with Hglobal =
∑b

i=1H
g
i , one could show that as s

increases, the conditioning number of HglobalA converges to 1. This result implies that data sharing
helps providing an unbiased estimate of the Hessian, which further boost the convergence speed. In
the numerical results, we consider different centers have different data distributions and show that
the data sharing also benefits PCG.

3. Algorithms Design and Numerical Results

In this section, we describe the sampling procedure to enable data sharing across local centers.
The meta data-sharing algorithm is simple and easy to implement – it samples α% of data uniform
randomly, and build a global data pool with the sampled data. The benefit of having a global data
pool is two-folded – (a) it allows the decision maker to have the freedom on changing the local data
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structure; (b) it allows the decision maker to have an unbiased sketch of the global higher order
information of the objective function. Due to the page limit, we present the following two figures to
show the benefit of small amount of data sharing in multi-block ADMM and PCG method. In the
supplementary material, we provide more results on showing the benefit of data sharing for linear
and logistic learning tasks.

3.1. Multi-block ADMM

Figure 1: Comparison between distributed multi-block ADMM and multi-block ADMM with data sharing, with α
being the fractional amount of data shared, α = 0.01 implies sharing 1% of data. Left : Relationship
between percentage of data shared and the time required for convergence. The required time for converging
to the same target tolerance level with no data shared is 2403.72 seconds. Right: Relationship between
percentage of data shared and the number of iterations required for convergence. The required number of
iterations for converging to the same target tolerance level with no data shared is 3952. In this case, 1% of
shared data provides 10 times speed up.

3.2. PCG method

Figure 2: Comparison of PCG algorithm with/without data sharing

4. Conclusions

This paper studies the benefit of data exchange distributed optimization and learning, with focus on
multi-block ADMM method and reconditioned conjugate gradient (PCG) method. For future work,
analysis on how the convergence speed depends on the percentage of data shared is an exciting
on-going theory work. In practice, we are interested in applying a small amount of data sharing
algorithms to other higher-order distributed optimization algorithms. We hope that the discovery
resulted from this paper would encourage even a small amount of data sharing among different
regions to combat difficult global learning problems.
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5. Supplementary Materials : Appendix on Proofs

5.1. Proof on Theorem 2

To prove Theorem 2, notice that the mapping matrix of primal distributed ADMM is given by

Mp = I−P−Φ+ 2ΦP, where Φ =
(
I+ 1

ρp
D
)−1

. Let λ ∈ eig(Mp), and v be the eigenvector
associated with λ, we have λ and v satisfies

(I−Φ+ (2Φ− I)P)v = λv (7)

For all block i ∈ {1, . . . , b}, equation (7) becomes

(I−Φi)vi + (2Φi − I)v̄ = λvi ∀ i, (8)

where Φi =
(
I+ 1

ρp
Di

)−1
, vi ∈ Rs×1 is the ith block of v (the {s(i−1)+1, s(i−1)+2, . . . , si}th

row of v), and v̄ = 1
b

∑b
i=1 vi is the average of vi.

We first give the proof of a special case where Di = Dj for all i, j ∈ {1, . . . , b}. Later we show
that, such data structure is indeed the worst data structure for the distributed ADMM with fixed q̄
and q when ρp > q̄. Let X̃ be the model matrix with Di = Dj =

1
b X̃

T X̃, equation (8) becomes(
I −

(
I +

1

bρp
X̃T X̃

)−1
)
vi +

(
2

(
I +

1

bρp
X̃T X̃

)−1

− I

)
v̄ = λvi ∀ i (9)

Let Ms be the primal distributed mapping matrix under the data structure where Di = Dj for all
i, j ∈ {1, . . . , b}, and let λ and v be the eigenvalue and eigenvector pairs of Ms, the following
lemma holds.

Lemma 4

λ ̸= 0 ∈ eig(Ms) ⇔ bρp(1− λ)

λ
∈ eig(X̃T X̃) or

bρpλ

1− λ
∈ eig(X̃T X̃) (10)

Proof. Suppose λ ̸= 0 ∈ eig(Ms), let λ and v be the eigenvalue and eigenvector pairs of Ms.
Consider the following two cases:

Case 1. v̄ = 1
b

∑b
i=1 vi ̸= 0.

Sum over equation (9) across centers i and take average, one have(
I+

1

bρp
X̃T X̃

)−1

v̄ = λv̄ (11)

With some algebra

X̃T X̃v̄ =
bρp(1− λ)

λ
v̄ (12)

Since v̄ ̸= 0 and λ ̸= 0, we conclude that bρp(1−λ)
λ ∈ eig(X̃T X̃). For the other direction,

suppose bρp(1−λ)
λ ∈ eig(X̃T X̃), let bρp(1−λ)

λ and v̄ be the eigenvalue eigenvector pair of X̃T X̃, we
have λ ̸= 0 and v̄ ̸= 0. Let vi = v̄ for all i, it’s easy to verify that λ and vi = v̄ satisfies equation
(9) for all i. Hence, λ ̸= 0 ∈ eig(Ms)

9
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Case 2. v̄ = 1
b

∑b
i=1 vi = 0

We first claim that if λ, v are eigenvalue eigenvector pair associated with Ms and v̄ = 1
b

∑b
i=1 vi =

0, then λ ̸= 1, so bρpλ
1−λ is well-defined. To see this, suppose λ = 1 ∈ eig(Ms) and the associated

eigenvector pair v satisfies v̄ = 0, (9) becomes(
2

(
I+

1

bρp
X̃T X̃

)−1

− I

)
v̄ =

(
I+

1

bρp
X̃T X̃

)−1

vi ∀ i (13)

With some algebra one have

vi =

(
I− 1

bρp
X̃T X̃

)
v̄ ∀ i (14)

As v̄ = 0, vi = 0 for all i, which contradicts to the fact that v is the eigenvector of Ms. Hence
when v̄ = 0, if λ ∈ eig(Ms), λ ̸= 1. And bρpλ

1−λ is well-defined.
Take any non-zero vi (which exists as v ̸= 0), equation (9) becomes(

I−
(
I+

1

bρp
X̃T X̃

)−1
)
vi = λvi (15)

With some algebra

X̃T X̃vi =
bρpλ

1− λ
vi (16)

Since vi ̸= 0 and λ ̸= 1, we conclude that bρpλ
1−λ ∈ eig(X̃T X̃).

For the other direction, suppose bρpλ
1−λ ∈ eig(X̃T X̃), let ṽ be the associated eigenvector pair, one

have λ ̸= 1. Let vi = ṽ and vj = − 1
b−1 ṽ for all j ̸= i, we have v̄ = 1

b

∑b
i=1 vi = 0, and it’s easy

to verify that λ and v satisfies equation (9) for all i.
With lemma 4, let q̃ ∈ eig(X̃T X̃) and λ ∈ eig(Ms), we have λ =

bρp
bρp+q̃ or λ = q̃

bρp+q̃ . As

X̃T X̃ has fixed largest eigenvalue q̄, ρp > q̄ and b ≥ 2, bρp
bρp+q̃ > q̃

bρp+q̃ . As X̃T X̃ has fixed smallest
eigenvalue q, the spectral radius of Ms is given by

ρ(Ms) =
bρp

bρp + q
(17)

To prove Theorem 2, we first introduce the following lemma to guarantee that the eigenvalues
of mapping matrix Mp is in the real space for ρp > q̄.

Lemma 5 Let λ(Mp) be the eigenvalue of mapping matrix Mp with ρp > q̄. λ(Mp) ∈ R

Proof. Note Mp = (I − Φ) + (2Φ − I)P, let S = 2Φ − I, S is a block diagonal matrix with

each diagonal block i given by Si = 2
(
I+ 1

ρp
Di

)−1
− I. For ρp > q̄, Si ≻ 0 for all blocks i.

To prove this, let qi ∈ eig(Di), since ρp > q̄, we have the spectral radius of ρ
(

1
ρp
Di

)
< 1, and

the Neumann series exist, with Si = 2
∑n

k=0(−1)k
(

1
ρp
Di

)k
− I, so Si is a polynomial function of

Di, and the eigenvalue of Si is 2
1+qi/ρp

− 1 > 0.
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Since Si ≻ 0 for all i and S is a block diagonal matrix with Si ≻ 0, S ≻ 0, and there exists an
invertible matrix B ∈ Rbp×bp such that S = BTB. Note that MpS = (I−Φ)S+(2Φ−I)P(2Φ−I)
and SMT

p = S(I − Φ) + (2Φ − I)P(2Φ − I). Since S(I − Φ) = −I + 3Φ − 2Φ2, and Φ is
symmetric, S(I−Φ) symmetric, and MpS = SMT

p . Equivalently, B−1MpB = (B−1MpB)T . Let
λ̂ and v̂ be the eigenvalue eigenvector pair of B−1MpB. Since B−1MpB is symmetric, λ̂ ∈ R,
and B−1MpBv̂ = λ̂v̂. Hence λ̂ and Bv̂ ̸= 0 are the eigenvalue eigenvector pair of Mp, and
λ(Mp) ∈ R.

With Lemma 5, we could transfer the spectrum of Mp to the eigenvalues of Mp, and we prove
theorem 2 by contradiction. From convergence of distributed ADMM (e.g. [8], [16], [26], [31]),
ρ(Mp) < 1.

Suppose that ρ(Mp) >
bρp

bρp+q . This implies there exists λ ∈ eig(Mp) and λ ∈
(

bρp
bρp+q , 1

)
or

λ ∈
(
−1,− bρp

bρp+q

)
. We start prove by contradiction for the two different cases.

Case 1. Suppose λ ∈ eig(Mp) and λ ∈
(

bρp
bρp+q , 1

)
.

Proof. Suppose there exists λ ∈
(

b
b+λmin(XTX)

, 1
)

and λ is the eigenvalue of Mp. Let
v = [v1; . . . ;vi; . . . ;vb] be the eigenvector associated with λ. λ and v satisfy equation (8). Sum
over all the b equations and taking the average on both side, we have

−1

b

b∑
i=1

Φivi +
2

b

b∑
i=1

Φiv̄ = λv̄ (18)

Besides, from equation (8), if λ ∈ eig(Mp), with some algebra

((1− λ)I−Φi)vi = (I− 2Φi)v̄ (19)

Following the assumption that λ ∈
(

bρp
bρp+q , 1

)
, ((1− λ)I−Φi)

−1 exists. To see this, notice

((1− λ)I−Φi)
−1 = −λ−1Φ−1

i

(
I− 1− λ

λρp
Di

)−1

. (20)

As bρp
bρp+q > 1

2 , suppose λ ∈ (
bρp

bρp+q , 1), λ ∈
(
1
2 , 1
)
, and 1−λ

λρp
∈ (0, 1). And since X is

normalized by its Frobenius norm, eig(XTX) ∈ (0, 1), so eig(Di) ∈ (0, 1),
(
I− 1−λ

λρp
Di

)
≻ 0,

and the inverse of
(
I− 1−λ

λρp
Di

)
exists. In fact, following the notation of [27],

(
I− 1−λ

λρp
Di

)
is

a M-matrix, so its inverse exists with
(
I− 1−λ

λρp
Di

)−1
≻ 0 and

(
I− 1−λ

λρp
Di

)
is inverse positive.

Hence ((1− λ)I− Φi)
−1 exists, and

vi = ((1− λ)I−Φi)
−1(1− 2Φi)v̄ (21)

Notice that v̄ ̸= 0. If v̄ = 0, vi = 0 for all i and this contradicts with the assumption that v is
the eigenvector of M . Plugging equation (53) into (18), one have

1

b

b∑
i=1

[2Φi −Φi((1− λ)−Φi)
−1(I − 2Φi)]v̄ = λv̄ (22)

11
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With some algebra,

2Φi −Φi((1− λ)−Φi)
−1(I− 2Φi) = −(2λ− 1)Φi((1− λ)I−Φi)

−1

= −(2λ− 1)Φi(((1− λ)Φ−1
i − I)Φi)

−1 = (2λ− 1)

(
λI− (1− λ)

ρp
Di

)−1 (23)

one have equation (22) becomes

1

b

b∑
i=1

[
(2λ− 1)

(
λI− (1− λ)

ρp
Di

)−1
]
v̄ = λv̄ (24)

Let

f(t|X, v̄) = v̄T

(
1

b

b∑
i=1

[
(2t− 1)

(
tI− (1− t)

ρp
Di

)−1
])

v̄ − tv̄T v̄ (25)

where v̄T is the transpose of v̄ and v̄ ∈ Rp×1. Let X be the associated model matrix of Mp, the
following relation holds

λ ∈ eig(Mp) ⇒ there exists v̄ ∈ Rp×1 ̸= 0 such that f(λ|X, v̄) = 0 (26)

To see this, let λ and v be the eigenvalue eigenvector pair of Mp, since λ ∈ R and Mp ∈
Rbp×bp, so v ∈ Rbp×1. Let v̄ =

∑b
i=1 vi, from equation 53, v̄ ∈ Rp×1 ̸= 0, and it’s easy to verify

that f(λ|X, v̄) = 0 for λ ∈ eig(Mp) and v̄.

We further prove λ /∈
(

ρpb
ρpb+q , 1

)
by showing that for all t ∈

(
ρpb

ρpb+q , 1
)

and any v̄ ̸= 0,

f(t|X, v̄) > 0, which contradicts to (56), hence if λ ∈ eig(Mp), λ ≤ bρp
bρp+q .

Let X̃ be the model matrix such that Di = Dj for all {i, j} ∈ {1, . . . , b} and let t̄ = bρp
bρp+q .

By Lemma 4, t̄ ∈ eig(Ms), and f(t̄|X̃, v̄) = 0, with v̄ = 1
b

∑b
i=1 vi and v = [v1; . . . ;vi; . . . ;vb]

the associated eigenvector to t̄. We propose the following claims to show that for all t ∈ (t̄, 1),
f(t|X, v̄) > 0 for all X satisfies assumption 1 and v̄ ̸= 0.

Claim 1: f(t̄|X̃, v̄) ≥ 0 for all v̄ ̸= 0.
Proof. When Di = Dj for all {i, j} ∈ {1, . . . , b}, we have

f(t̄|X̃, v̄) = v̄T

2t̄− 1

t̄

(
I− 1− t̄

t̄ρp

X̃T X̃

b

)−1

− t̄ I

 v̄ (27)

It’s sufficient to show that

2t̄− 1

t̄

(
I− 1− t̄

t̄ρp

X̃T X̃

b

)−1

− t̄ I ⪰ 0 (28)

Note t̄ =
bρp

bρp+q , (28) is equivalent as

(
I−

q

b2ρ2p
X̃T X̃

)−1

⪰
b2ρ2p

b2ρ2p − q2
I (29)

12



HOW A SMALL AMOUNT OF DATA SHARING BENEFITS HIGHER-ORDER DISTRIBUTED OPTIMIZATION AND LEARNING

Note that the spectral radius of
q

b2ρ2p
X̃T X̃, ρ

(
q

b2ρ2p
X̃T X̃

)
=

qq̄

b2ρ2p
< 1. Hence the Neumann

series exists and
(
I− q

b2ρ2p
X̃T X̃

)−1
could be write as polynomial of X̃T X̃. And let q̃ be the eigen-

value of X̃T X̃, the eigenvalue of
(
I− q

b2ρ2p
X̃T X̃

)−1
is given by b2ρ2p

b2ρ2p−q̃q
, which is lowerbounded

by b2ρ2p
b2ρ2p−q2

. So (29) holds and f(t̄|X̃, v̄) ≥ 0.

Claim 2: f(t̄|X, v̄) ≥ 0, with strict inequality holds when Di−Dj is non-singular for all i and
j.

Proof. Note for any X = [X1, . . . ,Xi, . . . ,Xb] and v̄ ̸= 0,

f(t̄|X, v̄) = v̄T

(
2t̄− 1

t̄

[
1

b

b∑
i=1

(
I− (1− t̄)

t̄ρp
Di

)−1
]
− t̄ I

)
v̄ (30)

We first show that for any X = [X1, . . . ,Xi, . . . ,Xb] and v̄ ̸= 0,

f(t̄|X, v̄)− v̄T

2t̄− 1

t̄

[
1

b

b∑
i=1

(
I− (1− t̄)

t̄ρp
Di

)]−1

− t̄ I

 v̄ (31)

=
2t̄− 1

t̄
v̄T

[1
b

b∑
i=1

(
I− (1− t̄)

t̄ρp
Di

)−1
]
−

[
1

b

b∑
i=1

(
I− (1− t̄)

t̄ρp
Di

)]−1
 v̄ ≥ 0 (32)

And when Di −Dj non singular

f(t̄|X, v̄)− v̄T

2t̄− 1

t̄

[
1

b

b∑
i=1

(
I− (1− t̄)

t̄ρp
Di

)]−1

− t̄ I

 v̄ > 0 (33)

Since t̄ > 1
2 , 2t̄−1

t̄ > 0. It’s sufficient to show that

1

b

b∑
i=1

(
I − 1− t̄

t̄ρp
Di

)−1

⪰

(
1

b

b∑
i=1

I − 1− t̄

t̄ρp
Di

)−1

(34)

and when Di −Dj is non-singular for all i, j ∈ {1, . . . , b},

1

b

b∑
i=1

(
I − 1− t̄

t̄ρp
Di

)−1

≻

(
1

b

b∑
i=1

I − 1− t̄

t̄ρp
Di

)−1

(35)

To prove this, we notice that matrix inverse is a (strictly) convex operation. Specifically note

that
(
I − 1−t̄

t̄ρp
Di

)−1
≻ 0 for all i. Following the [3], for positive definite matrix X and Y, with

α ∈ [0, 1], the following identity holds

αX−1 + (1− α)Y−1 − [αX+ (1− α)Y]−1 = α(1− α)X−1(Y −X)Y−1[αY−1 + (1− α)X−1]Y−1(Y −X)X−1

(36)

So for α ∈ [0, 1], X,Y ≻ 0

αX−1 + (1− α)Y−1 ⪰ [αX+ (1− α)Y]−1 (37)

13
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with the following equation holds when α ∈ (0, 1) and X−Y non singular

αX−1 + (1− α)Y−1 ≻ [αX+ (1− α)Y]−1 (38)

By induction on applying (37) and (38), we prove (34) and (35). We further show that,

v̄T

2t̄− 1

t̄

[
1

b

b∑
i=1

(
I− (1− t̄)

t̄ρp
Di

)]−1

− t̄ I

 v̄ ≥ 0 (39)

Note

v̄T

(
2t̄− 1

t̄

[
1

b

b∑
i=1

(
I− (1− t̄)

t̄ρp

Di

)]−1

− t̄ I

)
v̄ = v̄T

(
2t̄− 1

t̄

[
I− (1− t̄)

t̄ρp

XTX

b

]−1

− t̄ I

)
v̄

(40)
It’s suffice to show

2t̄− 1

t̄

[
I− (1− t̄)

t̄ρp

XTX

b

]−1

− t̄ I ≻ 0 (41)

Following (29), this is equivalent as showing(
I−

q

b2ρ2p
XTX

)−1

⪰
b2ρ2p

b2ρ2p − q2
I (42)

Similarly, let q ∈ eig(XTX), the eigenvalue of
(
I− q

b2ρ2p
XTX

)−1
is given by b2ρ2p

b2ρ2p−qq
, which

is lowerbounded by b2ρ2p
b2ρ2p−q2

. So (42) holds, hence we prove (39) holds. And we finish the proof on
Claim 2.

Claim 3: f(t|X, v̄) > 0 for all t ∈ (t̄, 1), X and v̄ ̸= 0.
Proof. Firstly, notice that given X, f(t|X, v̄) is a twice differentiable continuous function on

t for t ∈ (x̄, 1), and f(1|X, v̄) = 0. Furthermore,

∂f(t|X, v̄)

∂t
= v̄T

[
1

b

b∑
i=1

2

(
tI− 1− t

ρp
Di

)−1

− 1

b

b∑
i=1

(2t− 1)

(
tI− 1− t

ρp
Di

)−1 (
I+

1

ρp
Di

)(
tI− 1− t

ρp
Di

)−1

− I

]
v̄

(43)

When t = 1,
∂f(t|X, v̄)

∂t
|t=1 = −v̄T

[
1

bρp
XTX

]
v̄ < 0 (44)

And with some algebra, the second order derivative with respect to t is given by

∂2f(t|X, v̄)

∂t2
= v̄T

[
2

b

b∑
i=1

(
tI− 1− t

ρp
Di

)−1

M′
i

(
tI− 1− t

ρp
Di

)−1
]
v̄ (45)

where

M′
i = −2

(
I+

Di

ρp

)
+ (2t− 1)

(
I+

Di

ρp

)(
tI− 1− t

ρp
Di

)−1 (
I+

Di

ρp

)
= −2

(
I+

Di

ρp

)
+ (2t− 1)

(
I+

Di

ρp

)2 (
tI− 1− t

ρp
Di

)−1

=

(
tI− 1− t

ρp
Di

)−1
[
−2

(
I+

Di

ρp

)(
tI − 1− t

ρp
Di

)2

+ (2t− 1)

(
tI− 1− t

ρp
Di

)(
I+

Di

ρp

)2
](

tI− 1− t

ρp
Di

)−1

(46)

14
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The second and third inequality comes from the fact that
(
I+ Di

ρp

)
and

(
tI− 1−t

ρp
Di

)−1
commute.(

tI− 1− t

ρp
Di

)−1(
I+

Di

ρp

)
=

1

t

(
I − 1− t

tρp
Di

)−1(
I +

1

ρp
Di

)
=

1

t

n∑
k=0

(
1− t

tρp
Di

)k (
I +

1

ρp
Di

)

=
1

t

n∑
k=0

(
I+

Di

ρp

)(
1− t

tρp
Di

)k

=

(
I+

Di

ρp

)(
tI − 1− t

ρp
Di

)−1

(47)

And
∂2f(t|X, v̄)

∂t2
= v̄T

[
2

b

b∑
i=1

(
tI− 1− t

ρp
Di

)−2

Mi

(
tI− 1− t

ρp
Di

)−2
]
v̄ (48)

where

Mi = −2

(
I+

Di

ρp

)(
tI − 1− t

ρp
Di

)2

+ (2t− 1)

(
tI− 1− t

ρp
Di

)(
I+

Di

ρp

)2

(49)

Note that Mi is a polynomial function of Di, with Mi = P (Di), where

P (x) =

(
x2

ρ2p
− 1

)(
t− x(1− t)

ρp

)
(50)

Let λi ∈ eig(Di), we have P (λi) ∈ eig(Mi). And for λi ∈ (0, 1) and t ∈
(
1
2 , 1
)
, P (λi) < 0,

hence Mi ≺ 0 for all i, and

∂2f(t|X, v̄)

∂t2
< 0, for t ∈

(
1

2
, 1

)
(51)

Combining the fact that t̄ > 1
2 , f(t̄|X, v̄) ≥ 0, and f(1|X, v̄) = 0, ∂f(t|X,v̄)

∂t |t=1 < 0, ∂2f(t|X,v̄)
∂t2

<
0 , f(t|X, v̄) > 0 for all t ∈ (t̄, 1), and we finish the proof of Claim 3.

Suppose λ ∈ eig(Mp) and λ ∈
(

bρp
bρp+q , 1

)
, there must exist v̄ ̸= 0 such that f(λ|X, v̄) =

0. However, for all t ∈
(

bρp
bρp+q , 1

)
and v̄ ̸= 0, f(t|X, v̄) > 0. Hence if λ ∈ eig(Mp), λ /∈(

bρp
bρp+q , 1

)
. And we finish the proof by contradiction for Case 1.

Case 2. Suppose λ ∈ eig(Mp) and λ ∈
(
−1,− bρp

bρp+q

)
.

Proof. Similarly, ((1− λ)I−Φi)
−1 exists. To see this, notice

((1− λ)I−Φi)
−1 = −λ−1Φ−1

i

(
I− 1− λ

λρp
Di

)−1

. (52)

As
(
I− 1−λ

λρp
Di

)
is positive definite, the inverse exists. And

vi = ((1− λ)I−Φi)
−1(1− 2Φi)v̄ (53)
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Hence we have v̄ ̸= 0, as if v̄ = 0, vi = 0 for all i which contradicts to vi is a valid eigenvector.
Let

f(t|X, v̄) = v̄T

(
1

b

[
b∑

i=1

M̂i

])
v̄ (54)

where

M̂i =
2t− 1

t

(
I− 1− t

tρp
Di

)−1

− t I (55)

The following relation holds

λ ∈ eig(Mp) ⇒ there exists v̄ ∈ Rp×1 ̸= 0 such that f(λ|X, v̄) = 0 (56)

For t ∈
(
−1,− bρp

bρp+q

)
, I − 1−t̄

t̄ρp
Di ≻ 0, so the inverse is also positive definite, and 2t−1

t > 0, so

M̂i ≻ 0 for all i, and f(t|X, v̄) > 0 for all t ∈
(
−1,− bρp

bρp+q

)
and v̄ ̸= 0.

Hence if λ ∈ eig(Mp), λ /∈
(
−1,− bρp

bρp+q

)
. We finish the proof by contradiction for Case 2.

With the previous proof on contradiction, we conclude that λ /∈
(
− bρp

bρp+q , 1
)

and λ /∈
(
−1,− bρp

bρp+q

)
.

Hence for ρp > q̄, the convergence rate of distributed ADMM is upper bounded by bρp
bρp+q̄ and the

upperbound is achieved when Di = Dj for all i, j ∈ {1, . . . , b}

5.2. Proof on Proposition 3

We first show that for ρp < q1, the convergence rate of distributed ADMM is upper bounded by
q̄

ρp+q̄ . Let λ ∈ eig(Mp) ∈ R. To see why λ ∈ R, note Mp = (I−Φ)−(I−2Φ)P, let S = I−2Φ,

S is a block diagonal matrix with each diagonal block i given by Si = I − 2
(
I+ 1

ρp
Di

)−1
. For

ρp < q1, we show that Si ≻ 0 for all blocks i. let qi ∈ eig(Di),
ρp

ρp+qi
∈ eig

((
I+ 1

ρp
Di

)−1
)

,

hence qi−ρp
ρp+qi

∈ eig(Si). Since ρp < q1, Si ≻ 0. And S ≻ 0. There exists an invertible matrix
B ∈ Rbp×bp such that S = BTB. Note that MpS = (I − Φ)S − (I − 2Φ)P(I − 2Φ) and
SMT

p = S(I−Φ)− (I− 2Φ)P(I− 2Φ). Since S(I−Φ) = I− 3Φ+ 2Φ2, and Φ is symmetric,
S(I − Φ) symmetric, and MpS = SMT

p . Equivalently, B−1MpB = (B−1MpB)T . Let λ̂ and
v̂ be the eigenvalue eigenvector pair of B−1MpB. Since B−1MpB is symmetric, λ̂ ∈ R, and
B−1MpBv̂ = λ̂v̂. Hence λ̂ and Bv̂ ̸= 0 are the eigenvalue/vector pair of Mp, and λ(Mp) ∈ R.

Since ρ(Mp) ≤ ρ(12Mp +
1
2M

T
p ), define M̂p as

M̂p =
1

2
Mp +

1

2
MT

p = I−Φ+ΦP+PΦ−P (57)

and let λ̂ and v = [v1; . . . ;vb] be the associated eigenvalue eigenvector pair of M̂p, we have λ̂ and
v satisfies

(I−Φ+ΦP+PΦ−P)v = λ̂v (58)

Multiply P by both side and let v̄ =
∑b

i=1 vi, λ̂ and v satisfies

PΦPv = λPv,
1

b

∑
j

Φjv̄ = λ̂v̄ (59)
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We consider two cases, v̄ ̸= 0 or v̄ = 0.
Case 1. v̄ ̸= 0
Since v̄ ̸= 0, from equation 59, λ̂ ∈ eig(M̂p) implies λ̂ ∈ eig(1b

∑
j Φj), and by Wely’s

theorem,

ρ(
1

b

∑
j

Φj) ≤
1

b

∑
j

ρ(Φj) (60)

And let q1 = mini=1,...,b

ρ(Φj) ≤
ρp

ρp + q1
∀j (61)

Hence
ρ(Mp) ≤ ρ(M̂p) ≤

ρp
ρp + q1

≤ q̄

ρp + q̄
(62)

Case 2. v̄ = 0
Since v̄ = Pv = 0, let λ̂ ∈ eig(M̂p) and v be the unit eigenvector (vTv = 1), the following

equation holds
(I−Φ+ΦP+PΦ−P)v = (I−Φ+PΦ)v = λ̂v (63)

As P = PT , multiply both side by vT

1− vTΦv + (Pv)TΦv = λ̂, λ̂ = 1− vTΦv (64)

Let q2 = maxi=1,...,b ρ(Di), by the fact that Φ− ρp
ρp+q2

I ≻ 0, λ̂ is upperbounded by

λ̂ = 1− vTΦv ≤ 1− ρp
ρp + q2

(65)

Since q̄ = ρ(XTX) ≥ q2, one have

ρ(Mp) ≤ λ̂ ≤ 1− ρp
ρp + q2

≤ 1− ρp
ρp + q̄

=
q̄

ρp + q̄
(66)

We proved that for ρp < q1, the convergence rate of distributed ADMM is upper bounded by q̄
ρp+q̄ .

As MGD = I−ρpX
TX, the convergence rate is given by max{1−ρpq, ρpq̄−1}. First, consider

ρp > q̄, the upper bound on convergence rate of distributed ADMM is bρp
bρo+q . And for ρp > 2

q̄+q ,

max{1 − ρpq, ρpq̄ − 1} = ρq̄ − 1. It’s easy to verify that for ρp > s2 =
2b−q̄q+

√
4b2+(q̄q)2

2bq̄ ,
bρp

bρo+q < ρq̄−1. Also, note that s2 > 2
q̄+q > q̄, hence ρ(Mp) < ρ(MGD). This implies for step size

ρp > s2, fixing same step-size, primal distributed ADMM converges faster than gradient descent
for any data structure.

For ρp < q1, the upper bound on convergence rate of distributed ADMM is q̄
ρp+q̄ . For ρp < 2

q̄+q ,

max{1− ρpq, ρpq̄− 1} = 1− ρpq. It’s also easy to verify that for ρp < s1, 1− ρpq > q̄
ρp+q̄ . Hence

ρ(Mp) < ρ(MGD). This implies for step size ρp < s1, fixing same step-size, primal distributed
ADMM converges faster than gradient descent for any data structure.
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5.3. Proofs on primal distributed ADMM and dual distributed ADMM shares exactly same
convergence rate

Proof. We need to show that the dual parallel algorithm could be represented as a linear system
with mapping matrix Md, such that Md = Mp = (I−P− ρp(D+ ρpI)

−1)(I− 2P).
Introducing the auxiliary variables, the dual distributed ADMM solves the following optimiza-

tion problem under the same partition of blocks with X = [X1; . . . ;Xb] and y = [y1; . . . ;yb].

min
t

1

2

b∑
i=1

tTi ti + yT
i ti

s.t. XT
i ti − vi = 0

b∑
i=1

vi = 0

(67)

Let ρd be the step size with respect to the augmented Lagrangian, the augmented Lagrangian of the
dual problem is given by

L(ti,vi,β) =
1

2

b∑
i=1

tTi ti + yT
i ti − βT (XT

i ti − vi) +
b∑

i=1

ρd
2
(XT

i ti − vi)
T (XT

i ti − vi) (68)

And the updating follows the rule

(ρdXiX
T
i + I)tk+1

i =ρdXiv
k
i +Xiβ

k − yi

vk+1
i =XT

i t
k+1
i − 1

b

b∑
i=1

Xit
k+1
i

βk+1 =βk − ρd
b

b∑
i=1

Xt
it

k+1
i

(69)

Introducing µi = XT
i ti, we have updating tk+1

i is equivalent as solving the following linear
equations

tk+1
i + ρdXiµ

k+1
i =ρdXiv

k
i +Xiβ

k − yi

µk+1
i =XT

i t
k+1
i

(70)

Rearranging
tk+1
i =− ρdXiµ

k+1
i + ρdXiv

k
i +Xiβ

k − yi

µk+1
i =− ρdX

T
i Xiµ

k+1
i + ρdX

T
i Xiv

k
i +XT

i Xiβ
k −XT

i yi

(71)

And 69 is equivalent as

(ρdX
T
i Xi + I)µk+1

i =ρdX
T
i Xiv

k
i +XT

i Xiβ
k −XT

i yi

vk+1
i =µk+1

i − 1

b

b∑
j=1

µk+1
j

βk+1 =βk − ρd
b

b∑
j=1

µk+1
j

(72)
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Let ηk+1 = ρdµ
k+1 − β̄k, where µk+1 = [µ1; . . . ;µi; . . . ;µb] ∈ Rbp×1, and β̄k = [βk; . . . ;βk; . . . ;βk] ∈

Rbp×1. ηk+1 is sufficient to capture the dynamic of the system. And the system follows

β̄k+1 =β̄k − ρd
b

b∑
j=1

µk+1
j = −Pηk+1

vk+1 =µk+1 −Pµk+1 =
1

ρd
(I−P)ηk+1

ηk =ρdµ
k − β̄k−1 = ρdv

k − β̄k

(73)

where vk+1 = [vk+1
1 ; . . . ;vk+1

i ; . . . ;vk+1
b ]. Since the system can be represented by η, let ci =

XT
i yi, and c = [c1; . . . ; cb] the mapping of η follows

(ρdD+ I)µk+1 =ρdDvk +Dβ̄k − c

µk+1 =(ρdD+ I)−1D(I−P)ηk − (ρdD+ I)−1DPηk − (ρdD+ I)−1c

=(ρdD+ I)−1D(I− 2P)ηk − (ρdD+ I)−1c

(74)

And
ηk+1 =ρdµ

k+1 − β̄k

=ρd(ρdD+ I)−1D(I− 2P)ηk +Pηk − ρd(ρdD+ I)−1c

=[(D+ ρdI)
−1D(I− 2P) +P]ηk − ρd(ρdD+ I)−1c.

(75)

We further have Md is given by

Md = [(D+ I/ρd)
−1D(I− 2P) +P]. (76)

When ρdρp = 1,
Md = [(D+ ρpI)

−1D(I− 2P) +P]. (77)

It’s sufficient to show that Mp = (I−P− ρp(D+ ρpI)
−1)(I− 2P) = Md.

Notice that (I−P)(I− 2P) = I−P, and Md = (I−P− ρp(D+ ρpI)
−1)(I− 2P),it’s suffi-

cient to show that

I−P− ρp(D+ ρpI)
−1(I− 2P) =(D+ ρpI)

−1D(I− 2P) +P, (78)

which is obvious as

I =(D+ ρpI)(D+ ρpI)
−1

I− ρp(D+ ρpI)
−1 =(D+ ρpI)

−1D

I− 2P− ρp(D+ ρpI)
−1(I− 2P) =(D+ ρpI)

−1D(I− 2P)

(79)

where the second equality holds because (D+ ρpI)
−1D = D(D+ ρpI)

−1, as D and (D+ ρpI)
−1

are both symmetric. And by proving Md = Mp, we finish the proof on proposition 8.
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5.4. Proof on dual RP ADMM converges faster than dual distributed ADMM under
worst-case data structure

Consider the following optimization problem

min
t

1

2
tT t+ yT t

s.t.XT t = 0
(80)

The augmented Lagrangian is thus given by

L(t,β) =
1

2
tT t+ yT t− βTXt +

ρd
2
tTXXtt (81)

Each data center i possesses (Xi,yi) with i = {1, . . . , b} data centers. Consider the following
RP multi-block ADMM algorithm

Algorithm 2: RP ADMM for solving (80)

Initialization: t = 0, step size ρd ∈ R+, tt = [t1t ; . . . ; t
i
t; . . . ; t

b
t ] ∈ Rn, βt ∈ Rp, and

stopping rule τ ;
while t ≤ τ do

random permute update order σ(b) = [σ1, . . . , σi, . . . , σb];
while i ≤ b do

Data center σi updates tσi
t+1 by

tσi
t+1 = argmintσi L([t

1
t+1; . . . ; t

σi−1
t+1 ; tσi ; tσi+1

t ; . . . ; tbt ],βt);
end
Decision maker updates βt+1 = βt − ρdX

T tt+1;
end
Output: βτ as global estimator

We prove that when ρd = 1, under worst case data structure, dual RP ADMM in expectation
converges faster than dual distributed ADMM for 2, 3 and 4 block ADMM. Our proving technique
requires solving the polynomial function of degree equals to number of blocks, and we focus on
the case where the polynomials have analytical solutions. The reason we take ρd = 1 is because,
when ρd = ρp = 1, the dual distributed ADMM shares exactly same convergence rate as primal
distributed ADMM, and we could utilize the previous theorem in order to fairly compare the con-
vergence rate of primal algorithm and dual algorithm by separating the effect of step-size choice.

Theorem 6 For ρp = ρd = 1, under the data structure of Di = Dj for all i, j ∈ {1, . . . , b}, the
expected convergence rate of dual RP ADMM is smaller than the convergence rate of distributed
ADMM for b ∈ {2, 3, 4}

The sketch of proof is as follows. To prove theorem 6, we show that for any random permuted
update order across blocks, the spectrum of linear mapping matrix under cyclic ADMM is upper
bounded and is smaller than the distributed ADMM. We then use Weyl’s theorem to show that the
spectrum of the expected mapping matrix of RP-ADMM is upper bounded by the average of the
spectrum of cyclic ADMM. In order to prove Theorem 6, we first introduce the following theorem
to provide the tight upper bound of linear convergence rate of cyclic ADMM.
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Theorem 7 For ρd = 1, under the data structure of Di = Dj for all i, j ∈ {1, . . . , b}, the
convergence rate of dual cyclic ADMM ρ(Mc) is unique solution to the function f(x) = q, where

f(x) =
x

1− x

(
1−

(
2x− 1

x2

)1/b
)

with b ∈ {2, 3, 4}. Moreover, dual cyclic ADMM converges faster than distributed ADMM under
such data structure with ρp = ρd = 1.

Proof. Without loss of generosity, in this proof we consider the ascending update order from
block 1 to block b. Similarly, introducing µi = XT

i ti, we have at period k, updating tk+1
i and βk+1

is equivalent as

ρdX
T
i Xi

 i∑
j=1

µk+1
j +

b∑
j=i+1

µk
j

+ µk+1
i = XT

i Xiβ
k −XT

i yi

βk+1 = βk − ρd

b∑
i=1

µk+1
i

(82)

We first show that Let L be the lower block triangular matrix with Li,j = XT
i Xi for j ≤ i, and

Li,j = 0 for j > i. For example, when b = 3, one have

L =

XT
1 X1, 0, 0

XT
2 X2, XT

2 X2, 0
XT

3 X3, XT
3 X3, XT

3 X3

 (83)

Following same definition on P and D, and let E = [Ip; . . . ; Ip] ∈ Rp×bp, µk+1 = [µk+1
1 ; . . . ;µk+1

b ] ∈
Rbp×1, one have the previous updating system could be written as[

I+ ρdL, 0
ρdE

T , I

] [
µk+1

βk+1

]
=

[
(I+ ρdL)− (I+ ρdbΦP) ΦE

0 I

] [
µk

βk

]
−
[
XT

i yi

0

]
(84)

And the linear mapping matrix of cyclic updating is given by

Mc =

[
(I+ ρdL)

−1, 0
−ρdE

T (I+ ρdL)
−1, I

] [
(I+ ρdL)− (I+ ρdbΦP) ΦE

0 I

]
(85)

By the fact eig(AB) = eig(BA) for matrix A,B ∈ Rn×n, it’s suffice to consider the eigenvalue
of the following matrix

M ′
c =

[
(I+ ρdL)− (I+ ρdbΦP) ΦE

0 I

] [
(I+ ρdL)

−1, 0
−ρdE

T (I+ ρdL)
−1, I

]
=

[
I− (I+ 2ρdbΦP)(I+ ρdL)

−1 ΦE
−ρdE

T (I+ ρdL)
−1 I

]
(86)

We have, when ρd = 1, one have

M ′
c =

[
(L− 2bΦP)(I+ L)−1 ΦE

−ET (I+ L)−1 I

]
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Let v = [v1;v2] be the associated eigenvector pair of λ, the following equations holds

(L− 2bΦP)(I+ L)−1v1 +ΦEv2 = λv1

−ET (I+ L)−1v1 + v2 = λv2

(87)

Under the data structure of Di = Dj for all i, j ∈ {1, . . . , b}, we first prove that λ ̸= 1. Suppose
λ = 1, one have

−ET (I+ L)−1v1 = 0 (88)

which implies
L(I+ L)−1v1 +ΦEv2 = v1 (89)

Firstly, v1 ̸= 0, if v1 = 0, one have ΦEv2 = 0, which implies v2 = 0, and that contradicts to
v = [v1;v2] being an eigenvector. Let m = (I + L)−1v1, one have ΦEv2 = m, and by equation
(88), Pm = 0, and PΦEv2 = ΦEv2, hence PΦEv2 = ΦEv2 = Pm = 0, which implies v2 = 0,
and one have m = 0. This ontradicts to v = [v1;v2] being an eigenvector, as m = 0 impiles
v1 = 0 given (I+ L)−1 ≻ 0.

Since λ ̸= 1, one have

v2 =
1

1− λ
ET (I+ L)−1v1 (90)

substituting v2 into previous equation,

(L− 2bΦP)(I+ L)−1v1 +
1

1− λ
ΦEET (I+ L)−1v1 = λv1 (91)

We claim that v1 ̸= 0, if v1 = 0, v2 = λv2, since λ ̸= 1, v2 = 0 which contradicts to the fact
that [v1,v2] is an eigenvector. We then introduce m = [m1; . . . ;mb] = (I + L)−1v1 ̸= 0 where
mi ∈ Rp×1. With some algebra, one have

(1− λ)2Lm+ (2λ− 1)bΦPm = λ(1− λ)m (92)

Let D̄ = XTX
b = Di for all i, this implies for all i ∈ {1, . . . , b}, one have the following

equations holds

(1− λ)2D̄
i∑

j=1

mj + (2λ− 1)D̄
b∑

j=1

mj = λ(1− λ)mi ∀ i (93)

and

mi−1 =

(
I− 1− λ

λ
D̄

)
mi (94)

We first show that mb ̸= 0. Suppose mb = 0, one have from the bth equation in (93),

λ2D̄

b∑
j=1

mj = 0 (95)

since we consider non-zero eigenvalues, and by the fact D̄ ≻ 0, equation (95) implies that
∑b

j=1mj =

0 which further implies for the (b− 1)th equation, one have

(1− λ)2D̄

b−1∑
j=1

mj = λ(1− λ)mb−1 (96)
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Since mb = 0,
∑b−1

j=1mj =
∑b

j=1mj = 0, and mb−1 = 0, by the induction one would have
m = [m1; . . .mb] = 0 which contradicts to the fact that m ̸= 0. With some algebra, one have
equations (93) implies that

λ

1− λ
D̄

b∑
j=1

(
I− 1− λ

λ
D̄

)b−j

mb = mb (97)

Let Mλ = λ
1−λD̄

∑b
j=1

(
I− 1−λ

λ D̄
)b−j

, one have if λ ∈ eig(Mc), 1 ∈ eig(Mλ). Moreover, since
Mλ is a polynomial function of D̄, let p ∈ eig(D̄), the eigenvalue of Mλ is given by

λ2

(1− λ)2

(
1−

(
1− 1− λ

λ
p

)b
)

(98)

And if λ ̸= 1 ∈ eig(Mc), λ is the solution the following equation with p ∈ (0, 1b )

f(λ) =

(
1− 1− λ

λ
p

)b

− 2λ− 1

λ2
(99)

Since the function is of polynomial degree b, for b = {2, 3, 4}, by the closed-form solution of
polynomials, one could check that the largest solution (in absolute value) not equal to 1 is given by
the unique solution to the function f(x) = q, where

f(x) =
x

1− x

(
1−

(
2x− 1

x2

)1/b
)
. (100)

With some algebra, one could also show that for b = 2, 3, 4, f ′(x) < 0 and f(x) is monotone
decreasing for x ∈ (12 , 1). Further, for distributed ADMM, by Theorem 2, for ρp = 1 the spectrum
of distributed ADMM mapping matrix is given by b

b+q . Plug the spectrum of distributed ADMM
into f(x), one have

f

(
b

b+ q

)
=

b(1− (1− q2/b2)1/b)

q
< q (101)

To see this, one have

1−
q2

b
< 1−

q2

b2
<

(
1−

q2

b2

)1/b

⇒
b(1− (1− q2/b2)1/b)

q
< q (102)

Hence, dual cyclic ADMM converges faster than distributed ADMM under such data structure with
ρp = ρd = 1. While we conjecture similar result holds for general b, when b > 4, there is
no explicit expression for the solution of higher order polynomials. One could further show that
the expected mapping matrix of RP-ADMM is the average of cyclic ADMM with different update
orders across blocks, and for each specific update order, by Theorem 7, the spectrum of cyclic
ADMM mapping matrix is upper bounded by the spectrum of distributed ADMM mapping matrix.
Hence, by Weyl’s theorem, the expected spectrum of RP-ADMM mapping matrix is smaller than
the spectrum of distributed ADMM mapping matrix.
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6. Supplementary Materials : Numerical Results
6.1. Data sharing algorithm

In this section, we describe the sampling procedure to enable data sharing across local centers.
The meta data-sharing algorithm is simple and easy to implement – it samples α% of data uniform
randomly, and build a global data pool with the sampled data. The benefit of having a global data
pool is two-folded – (a) it allows the decision maker to have the freedom on changing the local
data structure; (b) it allows the decision maker to have a unbiased sketch of the global higher order
information of the objective function, e.g., the sketch of Hessian information.

Algorithm 3: Meta data-sharing algorithm

Initialization: (Xi,yi) for i = 1, . . . , b;
Sampling Procedure : Randomly sample α% from total observations (X, y);
Let r ∈ Zm×1 be the index of selected data (m = ⌊α%n⌋). Let ri be the index of selected data

at data center i, and li be the index of data remains local at data center i;
Output: global data pool (Xr,yr) = ([Xr1 ; . . . ;Xrb ], [yr1 ; . . . ;yrb ]). Allow local data center
to have access to (Xr,yr) ;

With the meta data-sharing and the global data pool, now the distributed optimization algorithms
have the access to a sketch of the global data. From numerical evidence, we are convinced that
we only need a small amount of data share to improve the convergence speed. Setting α at a
low level also allows us to also enjoy the benefits of distributed optimization. As the majority of
data still remains at local, the algorithm could take advantages from such structure. For example,
the algorithm could pre-factorize the local data observation matrix for faster computation. Hence,
without specification, we fix α to be 5% across numerical experiments. After we decide on the
desirable level of data share , for each distributed optimization algorithm, we still need to carefully
design how the algorithm should utilize the global data pool efficiently. In the next section, we
implement the algorithms with careful and tailored design on utilizing data sharing for different
algorithms (e.g., multi-block ADMM method and PCG method), under the context that the majority
of data are locally stored, where one could also pre-process the local data to improve efficiency.

The numerical result section is organized as follows. Section 6.2 provides the algorithm de-
sign for multi-block ADMM with data-sharing. We further show the numerical results for both
the least square regression and the logistic regression, and compare our performance with multi-
block distributed ADMM without data share, together with other variants of multi-block ADMM
algorithms2.

6.2. Apply data sharing in multi-block ADMM methods

In this section, we present results on both the least square regression and logistic regression. For
least square regression, we test the algorithms on the benchmark of UCI machine learning repository
regression data ([7]). And we compare the absolute loss among different algorithms, with absolute
loss AL = ∥β∗ − β̂∥2, where β∗ is the optimal estimator and β̂ is the estimator produced by each

2. The experiments were done on MacBook Pro with Apple M1 Pro and 16Gb memory running macOS High Sierra,
v 12.4. The matlab code for all numerical results are available at github.com/mingxiz/data_sharing_
matlab.

24

github.com/mingxiz/data_sharing_matlab
github.com/mingxiz/data_sharing_matlab


HOW A SMALL AMOUNT OF DATA SHARING BENEFITS HIGHER-ORDER DISTRIBUTED OPTIMIZATION AND LEARNING

algorithm. We further add L2 regularization for all regression problems in order to guarantee the
uniqueness of β∗. For logistic regression, we generate the synthetic data with Gaussian noise and
the ground truth estimator β∗. We further compare the absolute loss AL = ∥β∗ − β̂∥2, where β∗

is the optimal estimator and β̂ is the estimator produced by each algorithm.
Firstly, from previous result, we know that the worst case data structure for distributed ADMM

depends on the relations between the step size and the local data matrix conditioning. And making
the local data structure differs from each other would improve the convergence speed. Hence, a
simple way to improve the performance of distributed ADMM is to allocate all the global data pool
to one existing center/block, in order to make that block have different data structure from others.
We tested the modified distributed ADMM with global data, and compare it with classic distributed
ADMM in UCI machine learning repository regression data. With fixed number of iteration equals
to 200, block number equals to 4, and percentage of sample α = 5%, the accuracy of estimator
β improves for 13 out of 14 problem instances. Besides,compared with the classifc distributed
ADMM, in average distributed ADMM with data sharing decreases the the absolute loss by 20%.
However, one could further design multi-block ADMM to better utilize the global data pool beyond
distributed updating order across each center. We further introduce a tailored multi-block ADMM
algorithm – the Dual Randomly Assembled and Permuted ADMM (DRAP-ADMM). We first use
the least square regression as an example to illustrate the idea of DRAP-ADMM for simplicity, and
we extend the setup to logistic regression later.

Introducing the auxiliary ζ, we have the primal problem could also be formulated as

min
ζ

1

2
ζT ζ

s.t. Xβ − y = ζ

(103)

And let t be the dual variables with respect to the primal constraints Xβ − y = ζ. Taking the dual
with respect to problem (103), we have

min
t

1

2
tT t+ yT t

s.t. XT t = 0
(104)

The augmented Lagrangian is thus given by

L(t,β) =
1

2
tT t+ yT t− βTXt +

ρd
2
tTXXtt (105)

The global estimator β is the dual variable with respect to the constraint XT t = 0 and ρd be
the step-size of dual problem. The reason we take dual is that, the dual variables t serves as a
label for each (potentially) exchanged data pair, and the randomization is more effective in the
dual space. We show that by simply taking the dual does not improve the convergence speed.
The following proposition guarantees that, the primal distributed algorithm and dual distributed
algorithm are exactly same in terms of computation and convergence rate. The proof is provided in
supplementary materials : Appendix on proofs.

Proposition 8 The primal distributed ADMM algorithm and the dual distributed ADMM algorithm
have exactly the same linear convergence rate if the step size for primal and dual algorithms satisfies
ρpρd = 1 when applied to the least square regression under the partition of blocks with X =
[X1; . . . ;Xb] and y = [y1; . . . ;yb].
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Proposition 8 states that by only taking the dual of the problem would not impact the convergence
speed, and more delicate design on the algorithms is required to enjoy the benefit of data sharing.
Hence, we design the Dual Randomly Assembled and Permuted ADMM (DRAP-ADMM) under
the inspiration of [22]. DRAP-ADMM updates the auxiliary variables following a random permuted
order across each data center. We present the high level idea on how we utilize the global data pool as
follows. Firstly, the meta data-sharing algorithm randomly selects a subset of data (Xri ,yri) from
data center i, and builds the global data pool (Xr,yr). When designing the algorithm, each center
i may first pre-compute and pre-factorize XT

li
XT

li
in order to enjoy the benefit of the distributed

structure, where Xli is the local data at center i. Then, at each iteration, each data center i receives
a random sample (without replacement) from the global data pool. The size of received data from
global data pool is the same as the size that the data center i contributes to the pool initially. Finally,
we random permute the update order across centers at each iteration. With the random sample of
data without replacement, DRAP-ADMM could both enjoy the benefit of majority data still remains
distributed, and utilize the shared data to change the local data structure constantly in order to avoid a
unfavorable data structure that leads to slow convergence. The general algorithm of DRAP-ADMM
is provided in Algorithm 4.

Algorithm 4: DRAP-ADMM
Initialization: t = 0, global data pool (Xr,yr), step size ρd ∈ R+ tt ∈ Rn, βt ∈ Rp, and
stopping rule τ ;

while t ≤ τ do
Random permute r to σt(r), partition σt(r) = [σ1

t (r); . . . ;σ
b
t (r)] according to |ri| (size of

ri);
Random permute the block-wise update order ξt(b) = [ξ1t , . . . , ξ

b
t ];

For i = ξ1t , . . . , ξ
b
t ;

Let σi
t = li ∪ σi

t(r). Center i updates

t
σt
i

t+1 = argminBFt∈R|Bi| L(t
σt
1

t+1, . . . , t
σt
i−1

t+1 , t, t
σt
i+1

t , . . . , t
σt
b

t ,βt);
Decision maker updates βt+1 = βt − ρdX

T tt+1

end
Output: βτ as global estimator

Here, we design the specific algorithm to utilize the global data accessible to each local centers.
Note that in order to better utilize the global data pool, we use random permuted updating order
instead of distributed updating order. In appendix of proofs, we show the benefit of having a random
permute updating – it improves the convergence rate under the worst case data structure compared
with distributed updating scheme. Further, a random assemble of local blocks with global data pool
would further help improve the convergence speed, and following a similar proof in [28] and [22],
one could show that DRAP-ADMM converges in expectation for linearly constrained quadratic
optimization problems.

There are several other variants of multi-block ADMM algorithms, including the symmetric
Gauss-Seidel multi-block ADMM (double-sweep ADMM) ([10],[30]) and the random-permuted
ADMM ([29]). In the following numerical experiments provided in Table 1, we use UCI machine
learning regression data [7] to first compare the performance of DRAC-ADMM with (1) primal
distributed ADMM, (2) double-sweep ADMM, (3) cyclic-ADMM and (4) RP-ADMM. Besides,
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since the data-sharing scheme of random allocates the global pool of data to each local centers
could also be applied to primal-distributed ADMM, double-sweep ADMM, and RP-ADMM, we
also compare the DRAC-ADMM with (5) primal distributed ADMM with data-share, (6) double-
sweep ADMM with data-share, and (7) RP-ADMM with data-share. We fix step-size to be ρ = 1
for both the primal algorithms and the dual algorithms in order to eliminate the effect of step-size
choices. And we set the percentage of shared data α = 5%. The data set has dimensionality
of n = 463, 715 and p = 90. From this set of experiments, We are convinced that, firstly, the
performance of multi-block ADMM algorithm significantly improves with only a small amount of
data share. Secondly, the random permute updating order seems to be the most compatible algorithm
to small amount of data-sharing, compared with other multi-block updating orders.

Fix run time = 100 s Fix number of iteration = 200

Primal Distributed ADMM 2.98× 10−3 4.10× 10−2

Double-Sweep ADMM 5.92× 10−3 3.44× 101

Cyclic ADMM 5.66× 10−6 3.44× 101

Random Permuted ADMM 6.62× 10−6 3.44× 101

Primal Distributed ADMM with data sharing 2.41× 10−3 4.01× 10−2

Double-Sweep ADMM with data sharing 3.80× 10−9 1.44× 10−5

Cyclic ADMM with data sharing 3.07× 10−9 1.13× 10−5

DRAP-ADMM 1.12× 10−9 9.25× 10−6

Table 1: Absolute Loss of different multi-block ADMM algorithms for L2 regression estimation on
data set Year Prediction MSD

From previous experiments, we are convinced that DRAP-ADMM performs better than the
other variant of multi-block ADMM method with data share. Moreover, α% does not need to be very
large for significant efficiency improvement. In the following experiments, we fix α% = 5%. The
following table shows more numerical results we performed on UCI machine learning repository.
We set number of local data centers to be 4. We fix the step-size ρp = ρd = 1 for primal distributed
ADMM and DRAP-ADMM. Note setting step-size equals to 1 does not favor the primal ADMM
nor the dual ADMM, as we show that the primal distributed ADMM and dual distributed ADMM
shares same convergence rate when ρpρd = 1. We consider two stopping rules, fixing the same
number or iteration, or the same run time.

From Table 2, we observe that compared with primal distributed ADMM, DRAP-ADMM could
attain a good quality predictor within fewer number of iterations. Specifically, with 200 iterations,
DRAP-ADMM significantly outperforms primal distributed ADMM. In practice, when conducting
regression prediction across different centers, the cost of communication for each iteration could
be extremely high. For example, in practice, when conducting regression prediction with health-
care trial data, the decision maker (researcher) would have to present physically to each hospitals
in order to perform optimization with local data. Hence, minimizing number of iteration required
would be a major objective for decision maker when performing estimation across data centers.
Nonetheless, we observe that DRAP-ADMM still enjoys some benefit when we fix the run time.
The reason is that, primal distributed ADMM could utilize the parallel updating and matrix pre-
factorization, hence, within same amount of time, the primal distributed ADMM updates more iter-
ations compared with DRAP-ADMM. In 100 seconds, primal distributed ADMM usually updates

27



HOW A SMALL AMOUNT OF DATA SHARING BENEFITS HIGHER-ORDER DISTRIBUTED OPTIMIZATION AND LEARNING

Fix run time = 100 s Fix number of iteration = 200
Primal distributed DRAP-ADMM Primal distributed DRAP-ADMM

Bias Correction 1.60× 10−3 3.71× 10−10 3.20× 10−3 6.31× 10−7

Bike Sharing Beijing 8.43× 10−4 9.57× 10−12 2.03× 10−2 6.61× 10−6

Bike Sharing Seoul 2.60× 10−3 1.71× 10−8 8.87× 100 5.80× 10−3

Wine Quality Red 3.45× 10−15 2.31× 10−14 8.10× 10−3 1.22× 10−7

Wine Quality White 7.36× 10−15 1.24× 10−13 2.40× 10−3 1.56× 10−6

Appliance Energy 5.02× 10−12 1.61× 10−9 7.56× 10−1 4.77× 10−5

Online News Popularity * 9.42× 10−16 3.23× 10−15 7.70× 10−4 4.63× 10−8

Portugal 2019 Election * 3.97× 10−16 4.97× 10−14 3.22× 10−5 1.99× 10−10

Relative Location of CT 1.65× 10−13 6.44× 10−12 1.29× 100 4.79× 10−4

SEGMM GPU 2.63× 10−13 2.20× 10−13 4.60× 10−3 2.65× 10−6

Superconductivity Data 1.25× 10−1 2.98× 10−6 6.97× 10−1 4.99× 10−4

UJIIndoorLoc Data 3.76× 10−1 4.48× 10−8 8.45× 10−1 2.53× 10−2

Wave Energy Converters 3.40× 10−3 7.12× 10−10 7.70× 10−3 2.39× 10−7

Year Prediction MSD 3.60× 10−3 4.56× 10−9 3.91× 10−2 2.64× 10−5

* The covariance matrix’s spectrum is of 1020, we scale each entry by
√
n.

Table 2: Absolute Loss on L2 regression estimation

more than millions of times in order to converge to a good quality of solution with smaller absolute
loss. As mentioned, since the cost per iteration might be sufficiently high, we are convinced that
DRAP-ADMM would be a good suit for decision maker to conduct regression estimation across
data centers.

We provide some intuition on the fast convergence result of DRAP-ADMM. Previous data-
sharing algorithms (e.g. [4], [22]) often require a random sample of data at each iteration. However,
the DRAP-ADMM algorithm selects the pre-fixed data for sharing before the iteration starts, and
the rest of data in each center remain local through the whole iteration process. Note that for multi-
block ADMM algorithms, the reason that data-exchange could speed up the convergence comes
from the fact that data-exchange alters the local data structure. And there is no major difference
between pre-fixing the shared data and random sampling data at each iteration, in terms of altering
the local data structure. However, the benefit of pre-fixing the shared data is two-folded. First, by
pre-fixing the shared data, each local center could still enjoy the benefit of distributed computing.
Each center could potentially perform the matrix multiplication for the local data ahead. And at
each iteration, when the permutation on the shared data is realized, although the updating order is
cyclic, each of the data center could still factorize the matrix in parallel, which significantly saves
the computation time. Secondly, one major benefit on distributed ADMM without data-sharing is
on its protection on privacy. Even a small amount of random sample of data at each iteration clearly
cost more compared with prefixing the sharing data, if we care about privacy protection. By pre-
fixing only a small amount of the shared data, we can enjoy the benefit of efficiency improvement
while keep the data shared across centers to be minimal.
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For general regression analysis including logistic regression, DRAP-ADMM would still apply.
The logistic regression minimizes the following objective

min

b∑
i=1

si∑
j=1

log(1 + exp(−yi,jxi,jβ)) (106)

with yi,j ∈ {−1, 1}. Similarly one could apply distributed ADMM to solve logistic regression
following Algorithm 1. One need to take the conjugate function of the primal objective, and solves
a different optimization problem for each center. When designing the ADMM method for logistic
regression, one could introduce the auxiliary variables in order to further improve the efficiency of
the algorithm. For DRAP-ADMM, let X = y ·X, we solve the following dual problem

min

b∑
i=1

si∑
j=1

ti,jlog(ti,j) + (1− ti,j)log(1− ti,j)

s.t. X T z = 0 · · ·β
t− z = 0 · · · ξ

(107)

The reason we introduce the auxiliary variables t is because, when solving for ti,j the problem is
much simpler compared with the optimization problem without auxiliary variables. As ti,j ∈ (0, 1),
without auxiliary, the problem is not separable across dual variables, and one need to apply for new-
ton method within the blocks in order to perform sub-block optimization. However, with auxiliary
variables, optimization for ti,j is separable not only across blocks, but actually across each obser-
vations. Hence, one could perform parallel one dimensional search to find the optimal ti,j at each
iteration. In Table 3, we present the result on comparing the performances across gradient descent
method (with backtracking step-size), primal distributed ADMM and DRAP-ADMM (with step-
size equals to 1). A widely used algorithm for solving logistic problem is via Newton method. To
further compare the algorithms, we select the benchmark algorithm to be the Newton method. We
need to point out here that the classic Newton method requires centralized learning and optimiza-
tion, which is not the focus of this paper. Nonetheless, we use centralized Newton method as the
benchmark, and show that distributed optimization with data sharing could outperform centralized
optimization method in aspect of convergence rate. Similarly, we fix α = 5%. We report the relative
ratio in the absolute loss with benchmark of centralized Newton method. The relative ratio in the
absolute loss rAL = ALALG−ALnewton

ALnewton
. We fix block numbers equals to 4 and the number of iterations

to be 10 for all the different algorithms. We expect the Newton method to perform well and a pos-
itive relative ratio of rAL is not surprising, as we allow the Newton method to perform centralized
optimization. However, notice that rAL < 0 implies that under fixed iteration, the algorithm out-
performs centralized newton method with smaller absolute value. We report the average of relative
ratio in the absolute loss for each size of problem instances with 20 sample of experiments. From
the result provided in Table 3, we observe that primal distributed ADMM method performs simi-
larly as gradient method. Several previous research study have already shown that ADMM method
may not be suitable for logistic regression (e.g. [14]), and the result on relatively poor performance
compared with both gradient descend and newton method is not surprising. However, it’s worth
mentioning that with 5% of data sharing, multi-block ADMM could even out-perform centralized
optimization method in terms of convergence speed. These results shed light on the importance
of managing the randomization and the data sharing in the design of multi-block ADMM method.
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Gradient Descent Primal Distributed DRAP-ADMM
n = 500, p = 20 8.18× 10−3 9.55× 10−3 −6.73× 10−3

n = 800, p = 40 2.53× 10−3 2.97× 10−3 −5.89× 10−3

n = 1000, p = 100 4.38× 10−4 5.18× 10−4 −2.23× 10−3

Table 3: Relative ratio of absolute loss on logistic regression

With the tailored design on the algorithm that takes advantages on both data-sharing and distributed
computing, one could hugely boost the convergence speed of ADMM method.
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