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Abstract
In this paper, we propose a Dimension-Reduced Second-Order Method (DRSOM) for convex and
nonconvex (unconstrained) optimization. Under a trust-region-like framework, our method pre-
serves the convergence of the second-order method while using only Hessian-vector products in
a few directions, which enables the computational overhead of our method remain comparable to
the first-order such as the gradient descent method. Theoretically, we show that the method has
a local quadratic convergence and a global convergence rate of O(ϵ−3/2) to satisfy the first-order
and second-order conditions in certain subspace under a commonly adopted approximated Hessian
assumption. We further show that this assumption can be removed if we perform a step of the Lanc-
zos method periodically at the end-stage of the algorithm. The applicability and performance of
DRSOM are exhibited by various computational experiments, particularly in machine learning and
deep learning. For neural networks, our preliminary implementation seems to gain computational
advantages in terms of training accuracy and iteration complexity over state-of-the-art first-order
methods such as SGD and ADAM.

1. Introduction

In this paper, we consider the following unconstrained optimization problem

min
x∈Rn

f(x), (1)

where f : Rn 7→ R is twice differentiable and possibly nonconvex and finf := inf f(x) > −∞. We
aim to find a “stationary point” x such that

∥∇f(x)∥ ≤ ϵ (2)

and x approximately satisfies the second-order necessary conditions in certain subspace.
Historically speaking, various methods have been proposed to solve (1). Under the Lipschitz-

continuous gradient condition, the gradient descent method is able to converge to a point that sat-
isfies (2) in O(ϵ−2) iterations [15]. This bound can be improved to O(ϵ−1/2) for convex f using
Nesterov’s acceleration [17]. If we use second-order information in the algorithm, Nesterov and
Polyak [16] show that solving (1) has an iteration complexity of O(ϵ−3/2) with cubic regularization
(also see Cartis et al. [4, 5]). Trust-region method is another popular second-order method, where a
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ball constraint is introduced and the cubic regularization is absent in the objective. Luenberger and
Ye [14] establish the iteration complexity of O(ϵ−3/2) for a fixed-radius trust-region method, which
matches the iteration bound of the aforementioned cubic regularized Newton method. However, the
complexity analysis for trust-region method with adaptive radius seems to be more challenging. To
our best knowledge, the first O(ϵ−3/2) bound for adaptive strategy is established only recently by
Curtis et al. [10].

For second-order methods, both explicit computation of Hessian and solving trust region sub-
problem (TRS) could be costly. A practical implementation usually uses a Lanczos method to find
inexact solutions [5, 8, 9], where the “inexactness” can be controlled by the quality of Hessian ap-
proximation in some sense [4, 10, 11, 21]. Recently, Carmon et al. [2, 3] use the negative curvature
with the accelerated gradient method to achieve a complexity bound of O(ϵ−7/4 log(ϵ−1)) with a
fast Lanczos method, however, the numerical experiment is not provided.

Motivated by previous research, our goal is to find a first-order method that incorporates the
second-order information cheaply. Specifically, we introduce a Dimension-Reduced Second-Order
Method (DRSOM) that restricts the iterates in the subspace spanned by the gradient and the momen-
tum. Therefore, the computational cost of DRSOM is mostly due to solving a 2-dimensional trust-
region subproblem and the Hessian-vector products (see [18]) to construct the 2-by-2 approximated
Hessian of the subproblem at each iteration, which is quite cheap. We also propose a “Radius-Free”
DRSOM with a quadratic regularization similar to the framework proposed in [10].

Theoretically, under a commonly adopted approximated Hessian assumption (cf. [4, AM.4]), we
show that DRSOM has a local quadratic convergence and has an O(ϵ−3/2) complexity to globally
converge to a point satisfying the first-order condition (2) and the second-order condition in a certain
subspace. We identify that this assumption is only needed at the end stage of the algorithm and
can be further removed if we perform a step of the Lanczos method periodically. Furthermore,
comparing to methods using fast curvature computation [2, 3] and inexact solutions [4, 8, 10] all
along, the frequency of invoking the Lanczos method by DRSOM is greatly reduced, which results
in significant savings in computational time.

Finally, we perform comprehensive experiments on convex and nonconvex problems. We note
DRSOM is comparable to a second-order method (e.g. the Newton-CG) in iteration. For deep learn-
ing, our preliminary implementation demonstrates notable advantages in terms of training accuracy
and iteration complexity over state-of-the-art first-order methods such as SGD and Adam.

Our paper is organized as follows. In Section 2, we discuss the details of the DRSOM including
its important building blocks. In Section 3, we give a suit of convergence results of DRSOM.
Finally, the comprehensive numerical results of DRSOM are summarized in Section 4.

2. The Algorithm Design

To facilitate the discussion, we denote gk = ∇f(xk), Hk = ∇2f(xk), and dk = xk − xk−1

throughout the paper. In each iteration of the Dimension-Reduced Second-Order Method (DRSOM)
we update xk+1 = xk −α1

kgk +α2
kdk and the step size αk = (α1

k, α
2
k) is determined by solving the

following 2-dimensional quadratic model mk(α) :

min
α∈R2

mk(α) := f(xk) + (ck)
Tα+

1

2
αTQkα

s.t. ∥α∥Gk
≤ ∆,

(3)
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where

Qk =

[
(gk)

THkgk −(dk)
THkgk

−(dk)
THkgk (dk)

THkdk

]
∈ S2, ck :=

[
−∥gk∥2
(gk)

Tdk

]
∈ R2, Gk =

[
(gk)

T gk −(gk)
Tdk

−(gk)
Tdk (dk)

Tdk

]
,

and ∥α∥Gk
=

√
αTGkα. The idea of considering function mk(α) was previously studied in Ye

[22], Yuan and Stoer [24]. The novel ingredient in this paper is to impose a 2 × 2 trust-region step
to determine the step-sizes, which is necessary and sufficient for solving nonconvex problems.

Although problem (3) is a 2-dimensional trust region model, it can be equivalently transformed
into a “full-scale” trust-region problem as shown below.

Lemma 1 The subproblem (3) is equivalent to

min
d∈Rn

m̃k(d) := f(xk) + gTk d+
1

2
dT H̃kd, s.t. ∥d∥ ≤ ∆, (4)

where H̃k = VkV
T
k HkVkV

T
k and Vk is the orthonormal bases for Lk := span{gk, dk}.

Consequently, we don’t require the constraint d ∈ Lk in problem (4) and shift the subspace re-
striction to the matrix H̃k, which can be viewed as the projection of the original Hessian Hk in
the subspace Lk. Therefore, H̃k plays similar role of the approximated Hessian matrix in quasi-
Newton method and DRSOM may also be regarded as a cheap quasi-Newton method. In fact, the
reformulation (4) will be frequently used in the convergence analysis of DRSOM.

Although (4) is useful in the theoretical analysis, we actually solve the 2-dimensional quadratic
problem (3) in the implementation of DRSOM. To efficiently compute the 2 × 2 matrix Qk in (3),
we make use of the decomposition Qk =

[
−gk dk

]T [
−Hk · gk Hk · dk

]
. Thus, it remains to

compute the two Hessian-vector products (see [18]): Hkgk and Hkdk. We adopt the following two
strategies to compute those products without request for the true Hessian Hk:

1. Finite difference: Hk · v ≈ 1
ϵ [g(xk + ϵ · v)− gk].

2. Automatic differentiation (AD): Hkgk = ∇(12g
T
k gk), Hkdk = ∇(dTk gk).

In practice, the finite-difference method should work in most cases and demonstrate reasonable
efficiency of computation, except for deep-learning applications where efficient implementation of
AD is realized.

Since we only need to solve a 2-dimensional TRS subproblem (3), per-iteration cost of DRSOM
is very cheap. Furthermore, such low-dimensional TRS subproblem can be solved very efficiently
[8, 18]; notably, Ye [23] shows that an ϵ-global primal-dual optimizer (α∗, λ∗) of TRS can be found
in O(log log(1/ϵ)) time. The complexity of the subproblem is thus affordable. We leave the details
of this subroutine to Section A.

In the implementation, we also consider the “Radius-Free” DRSOM by dropping the ball con-
straint in (3) while imposing a quadratic regularization in the objective:

min
α∈R2

mk(α) + µk∥α∥2Gk
. (5)

We present a conceptual DRSOM in Algorithm 1 by incorporating the two alternatives (3) and (4)
to compute the step size α, where the adaptive strategy to update the radius of the trust-region con-
straint or the coefficient of the quadratic regularization is adopted. We leave the detailed description
of the adjustment on ∆k or µk in Section C.
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Algorithm 1: A conceptual DRSOM algorithm

Data: Given kmax, µ1 = 0,∆1 ∈ (0, ∆̄), and η ∈ [0, ζ1);
for k = 1, ..., kmax do

Solve (3) or (5) for αk, compute dk+1 = −α1
kgk + α2

kdk and ρk :=
f(xk)−f(xk+dk+1)
mk(0)−mk(αk)

;
If ρk > η Accept the step and update xk+1 = xk+dk+1; o.w. Adjust ∆k in (3) or µk in (5).

end

3. Convergence Results

In this section, we provide a a suite of convergence results of DRSOM. The detailed proofs can be
found in Section C.

3.1. Finite convergence for strongly convex quadratic programming

We first show DRSOM has finite convergence for convex quadratic programming.

min f(x) =
1

2
xTAx+ aTx, (6)

where A ≻ 0. For this case, we do not have to place a trust-region radius for DRSOM, i.e., ∆k is
sufficiently large, λk = 0 for all k. We have the following theorem.

Theorem 1 If we apply DRSOM to (6) with no radius restriction, i.e., ∆ is sufficiently large, then
the DRSOM generates the same iterates of conjugate gradient method, if they start at the same point
x0.

The equivalence of quadratic minimization over Lk and conjugate gradient method was also es-
tablished in Yuan and Stoer [24]. We provide the proof of Theorem 1 for the completeness of the
paper.

3.2. Global and local convergence rate

Before presenting the results on convergence rate, we make the following assumptions. The first
one is standard for second order method; see Nesterov [15].

Assumption 1 f has L-Lipschitz continuous gradient and M -Lipschitz continuous Hessian such
that for ∀x, y ∈ Rn,

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ and ∥∇2f(x)−∇2f(y)∥ ≤ M∥x− y∥. (7)

The second one is regarding the approximated Hessian H̃k, which is commonly used in the litera-
ture; see [5, 10, 11, 21].

Assumption 2 The approximated Hessian matrix H̃k along subspace Lk satisfies:

∥(Hk − H̃k)dk+1∥ ≤ C∥dk+1∥2 (8)
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Although we adopt the adaptive strategy to choose the radius in the implementation, our analysis is
conducted under the fixed-radius strategy such that a step is always accepted for simplicity. In terms
of the global convergence rate, we show that DRSOM has an O

(
ϵ−3/2

)
complexity to converge to

the first-order stationary point and second-order point in the subspace.

Theorem 2 Under the fixed-radius strategy by setting ∆k = 2
√
ϵ

M , the DRSOM runs at most
O
(
3
2M

2(f(x0)− finf)ϵ
−3/2

)
iterations to reach an iterate xk+1 that satisfies the first-order con-

dition (2), and the approximated second order condition in the subspace Lk: VkV
T
k Hk+1VkV

T
k ⪰

−3
√
ϵI, where Vk is the orthonormal bases for Lk.

Regarding the local rate of convergence, we have the following results.

Theorem 3 Suppose x∗ is a second-order stationary point such that H(x∗) ⪰ µI for some
µ > 0. Then if xk is sufficiently close to x∗, DRSOM converges to x∗ quadratically, namely:
∥xk+1 − x∗∥ ≤ O(∥xk − x∗∥2).

3.3. Discussion on Assumption 2

In fact, the inequality (8) in Assumption 2 plays a crucial role in our convergence analysis. To ensure
(8), a popular strategy is to apply a Lanczos method; see [5, 8, 10]. Although we have not rigorously
established the validness of Assumption 2 yet, we manage to find out that it is only required when λk

is small. Therefore, we apply the Lanczos method only when λk ≤ √
ϵ during the iteration process

of DRSOM. Then the expanded subspace due to the Lanczos method, in return possibly produces
a larger λk (and thus DRSOM proceeds). Therefore, Lanczos method is only called periodically
when λk ≤ √

ϵ, which corresponds to the late-stage of the algorithm. Finally, we terminate the
algorithm as soon as λk ≤ √

ϵ and (8) hold simultaneously. We provide the detailed discussion in
Section B.

4. Numerical experiments

In the numerical experiments, we first run DRSOM on the multinomial logistic regression model
and the nonconvex L2 − Lp problem. The results show DRSOM is close to the authentic second-
order methods in terms of the solution quality for both convex and nonconvex minimization with less
computational time. We provide an intriguing example of the sensor network localization problem
where DRSOM can provide better solutions than the first-order methods. The rest of the experiments
focus on deep learning. Our preliminary implementation illustrates DRSOM outperforms Adam in
training neural networks. We present implementation details and numerical results in Section C.
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Appendix A. Details for Solving TRS

Similar to full-dimensional TRS, in our method, the subproblem (3) can be solved efficiently. We
introduce the following Lemma which is widely known:

Lemma 2 The vector α∗ is the global solution to trust-region subproblem (3) if it is feasible and
there exists a Lagrange multiplier λ∗ ≥ 0 such that (α∗, λ∗) is the solution to the following equa-
tions:

(Qk + λGk)α+ ck = 0, Qk + λGk ⪰ 0, λ(∆− ∥α∥Gk
) = 0. (9)

From the construction of Qk and Gk, we have that

Qk + λGk =

[
−gTk
dTk

]
(Hk + λI)

[
−gk dk

]
. (10)

Therefore, even if Qk is indefinite, there always exists a sufficiently large λ such that condition
(9) holds. Due to the fact that we only use 2 directions, the subproblems are easy to solve; for
example, Ye [23] shows that an ϵ-global primal-dual optimizer (α∗, λ∗) satisfying (9) can be found
in O(log log(1/ϵ)) time. One may also find the optimal solutions by other standard methods in
Conn et al. [8].

We also introduce the normalized problem to enable concise analysis. Let Vk be the orthonormal
bases for Lk,

min
α∈R2

f(xk) + αTV T
k gk +

1

2
αTV T

k HkVkα

s.t. ∥α∥ ≤ ∆k.

(11)

It is easy to (11) and (3) are equivalent under a linear transformation. With a slightly abuse of
notation, letting αk and λk be the solution and the associated Lagrangian multiplier with the trust
region constraint to the normalized problem, we have the following lemma.

Lemma 3 Let αk and λk be the solution and the associated Lagrangian multiplier with the trust
region constraint to the normalized problem. Construct dk+1 = Vkαk, then dk+1 is the solution to
the full-scale problem (4) such that

(H̃k + λkI)dk+1 + gk = 0, H̃k + λkI ⪰ 0, λk(∥dk+1∥ −∆k) = 0, (12)

where H̃k = VkV
T
k HkVkV

T
k .

Proof According to (9), we have that

(V T
k HkVk + I)αk + V T

k gk = 0, V T
k HkVk + λkI ⪰ 0, λk(∆− ∥αk∥) = 0. (13)

Multiplying Vk to the left of both sides of the first equation in (13) yields that

VkV
T
k HkVkV

T
k Vkαk + λkVkαk = VkV

T
k HkVkαk + λkVkαk = −VkV

T
k gk = −gk,

where the first equality is due to V T
k Vk = I and the last equality follows from VkV

T
k is the projection

matrix of Lk and gk ∈ Lk. As a result, we have that:

(VkV
T
k HkVkV

T
k + λkI)dk+1 + gk = 0

9
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proving the first equation in (12). Due to the second equation in (13), we have that

αTV T
k HkVkα+ λkα

Tα ≥ 0, ∀ α ∈ R2.

By letting d = Vkα, it is equivalent to

dTHkd+ λkd
Td ≥ 0, ∀ d ∈ Lk

due to Vk is the orthonormal bases for Lk and dTd = αTV T
k Vkα = αTα. The inequality above is

further equivalent to
d̃T (VkV

T
k HkVkV

T
k + λkI)d̃ ≥ 0, ∀ d̃ ∈ Rn

as VkV
T
k is the projection matrix of Lk, and this proves H̃k + λI ⪰ 0 in (12). Finally, since

dTk+1dk+1 = αT
k V

T
k Vkαk = αT

k αk, the last equation in (12) follows from the last equation in (13).

Appendix B. Proofs of Main Results

B.1. Proof of Theorem 1

Proof To show its equivalence to the conjugate gradient method, we only have to prove the iterate
xk by DRSOM minimizes f(x) in the subspace such that:

xk ∈ Lk = x0 + span{d1, ..., dk}.

Since there is no radius, the solution that minimizes mk strictly corresponds to the optimizer of f(x)
in the subspace xk + span{gk, dk}. In other words, the iterate of DRSOM can also be retrieved by
simply choosing the stepsizes such that xk+1 = argmin f(x) and xk+1 = xk−α1

kgk+α2
kdk. From

such a perspective, we show that the xk is equivalent to x̃k by the conjugate gradient method.
Note x̃k minimizes f(x) over the subspace below:

x0 + span{d̃1, ..., d̃k},

where d̃1, ..., d̃k are conjugate directions for CG. By construction, we see x1 = x0 + α1
0g0 and

d1 = α1
0g0, so that x1 = x̃1. Assume it holds for k, we know for CG:

g̃k ∈ span{d̃k, d̃k+1},

and since gk = g̃k, dk = d̃k, we have

span{d̃k, d̃k+1} = span{dk, gk}, (14)

Now we know from the next minimizer xk+1 ∈ xk + span{dk, gk}:

xk+1 ∈ x̃k + span{d̃k, d̃k+1},

and since x̃k+1 minimizes f over both x0 + span{d1, ..., dk, d̃k+1} and xk + span{d̃k+1}, we have
that xk+1 = x̃k+1 as the desired result.

10
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B.2. Proof of Theorem 2

Let us first inspect the properties of the reduction by the quadratic model.

Lemma 4 (Model reduction) At iteration k, let dk+1 and λk be the solution and Lagrangian mul-
tiplier constructed in Lemma 3. If λk > 0 , we have the following amount of decrease on m̃k:

m̃k(dk+1)− m̃k(0) = −1

2
λk∆

2
k. (15)

Proof In view of Lemma 1 and Lemma 3, the optimal condition (12) holds. Then, we have
∥dk+1∥ = ∆k due to λk > 0 and that:

m̃k(dk+1)− m̃k(0) = gTk dk+1 +
1

2
dTk+1H̃kdk+1

= −1

2
dTk+1(H̃k + λkI)dk+1 +

1

2
dTk+1H̃kdk+1

= −1

2
λk∆

2
k,

(16)

which completes the proof.

Take ∆k = ∆ = 2
√
ϵ

M and combine with the reduction of the quadratic model, we conclude
that DRSOM generates sufficient decrease at every iteration k as long as λk ≥ √

ϵ. The following
analysis based on a fixed trust-region radius is motivated from Luenberger and Ye [14].

Lemma 5 (Sufficient decrease) At iteration k, take ∆k = ∆ = 2
√
ϵ

M , and let dk+1 and λk be
the solution and Lagrangian multiplier obtained in Lemma 3. If λk ≥ √

ϵ , we have the following
amount of function value decrease,

f(xk+1) ≤ f(xk)−
2

3M2
ϵ3/2. (17)

Proof Since dk+1 ∈ Lk and VkV
T
k is the projection matrix of Lk, it holds that

dTk+1H̃kdk+1 = dTk+1VkV
T
k HkVkV

T
k dk+1 = dTk+1Hkdk+1.

Moreover, with second-order Lipschitz continuity and tailor expansion, we immediately have:

f(xk+1) ≤ f(xk) + (gk)
Tdk+1 +

1

2
(dk+1)

THk(dk+1) +
M

6
∥dk+1∥3

= f(xk) + (gk)
Tdk+1 +

1

2
(dk+1)

T H̃k(dk+1) +
M

6
∥dk+1∥3

= f(xk)−
1

2
λk∆

2 +
1

6
M∆3

= f(xk)−
2λkϵ

M2
+

4ϵ3/2

3M2

(18)

where the second last equality is due to Lemma 4 and ∥dk+1∥ = ∆k = ∆ from the optimality
condition (12) with λk > 0. Noting that λk ≥ √

ϵ, inequality (18) implies that

f(xk+1) ≤ f(xk)−
2

3M2
ϵ3/2.

11
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The following result states that when λk ≤ √
ϵ and the Hessian regularity condition hold, we

can terminate the process at the next iterate xk+1 that approximated satisfies the first-order condition
and the second-order condition in the subspace.

Lemma 6 At iteration k, if the Lagrangian multiplier λk associated with the trust region con-
straint in (3) satisfies λk ≤ √

ϵ and Hessian regularity condition (8) holds, then the iterate xk+1

approximately satisfies the first-order condition, and the second-order condition in the subspace Lk.

Proof Suppose dk+1 is the solution obtained in Lemma 3. By second-order Lipschitz continuity
and the first equation in the optimality condition (12), we have that:

∥gk+1∥ ≤ ∥gk+1 − gk −Hkdk+1∥+ ∥(Hk − H̃k)dk+1∥+ ∥(gk + H̃kdk+1)∥

≤
∥∥∥∥∫ 1

0

[
∇2f(xk + τdk+1)−Hk

]
dk+1dτ

∥∥∥∥+ ∥(Hk − H̃k)dk+1∥+ λk∥dk+1∥

≤ 1

2
M∥dk+1∥2 + λk∥dk+1∥+ ∥(Hk − H̃k)dk+1∥

(19)

In view of Assumption 2, λk ≤ √
ϵ and ∥dk+1∥ ≤ ∆ = 2

√
ϵ

M , we immediately have

∥gk+1∥ ≤
(
1

2
M + C

)
∥dk+1∥2 + λk∥dk+1∥

≤
(
1

2
M + C

)
4ϵ

M2
+

2ϵ

M

≤
(

4

M
+

4C

M2

)
ϵ.

(20)

As for the second-order condition, the second condition in (12) and λk ≤ √
ϵ imply that

−√
ϵI ⪯ −λkI ⪯ H̃k = VkV

T
k Hk+1VkV

T
k + H̃k − VkV

T
k Hk+1VkV

T
k

= VkV
T
k Hk+1VkV

T
k + VkV

T
k (Hk −Hk+1)VkV

T
k

⪯ VkV
T
k Hk+1VkV

T
k + ∥VkV

T
k (Hk −Hk+1)VkV

T
k ∥I

⪯ VkV
T
k Hk+1VkV

T
k + ∥VkV

T
k ∥∥Hk+1 −Hk∥∥VkV

T
k ∥I

= VkV
T
k Hk+1VkV

T
k + ∥Hk+1 −Hk∥I

⪯ VkV
T
k Hk+1VkV

T
k +M∥dk+1∥I

⪯ VkV
T
k Hk+1VkV

T
k + 2

√
ϵI, (21)

where the second last matrix inequality is due to the Lipschitz continuity of the Hessian and the last
matrix inequality follows from ∥dk+1∥ ≤ ∆ = 2

√
ϵ

M . Hence, it holds that

VkV
T
k Hk+1VkV

T
k ⪰ −3

√
ϵI,

which indicates that Hk+1 is approximately positive semi-definite in the subspace Lk.

12
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We now ready to show Theorem 2. According to Lemma 6, when λk ≤ √
ϵ, we already obtain

an iterate that approximately satisfies the first-order condition, and the second-order condition in
certain subspace. On the other hand, when λk >

√
ϵ, Lemma 5 indicates that the objective function

has a amount of decrease 2
3M2 ϵ

3/2 at every iteration k. Note that the total amount of decrease cannot
exceed f(x0)− finf . Therefore, the number of iterations with λk >

√
ϵ is upper bounded by

O

(
3

2
M2(f(x0)− finf)ϵ

−3/2

)
,

which thus is also the iteration bound of our algorithm.

B.3. Proof of Theorem 3

Lemma 7 Let Vk be the orthonormal bases for Lk, suppose αk is the solution to the normalized
problem (11). Let dk+1 = Vkαk, then the following inequality holds:

∥dSNk+1 − dk+1∥ ≤ 1

µ
λk∥dk+1∥, (22)

where λk is the Lagrangian multiplier associated with the trust region constraint in (11), and
dSNk+1 = Vkα

SN
k is the subspace Newton step with αSN

k defined by:

αSN
k = arg min

α∈R2
f(xk) + αTV T

k gk +
1

2
αTV T

k HkVkα. (23)

Proof Since αk is a solution to the normalized problem (11), the optimality condition gives that

(V T
k HkVk + λkI)αk = −gTk Vk.

As αSN
k is a solution to problem (22), due to optimality condition it holds that

V T
k HkVkα

SN
k = −gTk Vk.

Combining the above two equations yields that

V T
k HkVk(αk − αSN

k ) = −λkαk. (24)

Moreover, note that

for any α ̸= 0, we have Vkα ̸= 0 and ∥Vkα∥ = ∥α∥, (25)

which combined with Hk ⪰ µI implies that

αTV T
k HkVkα ≥ µ∥Vkα∥2 = µ∥α∥2.

Therefore V T
k HkVk ⪰ µI2 holds (also implies that V T

k HkVk is nonsingular), it follows that

∥αSN
k − αk∥ ≤ ∥(V T

k HkVk)
−1∥∥V T

k HkVk(α
SN
k − αk)∥ ≤ 1

µ
λk∥αk∥, (26)

13
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where the second inequality is due to (24). Therefore, by combining the construction of dSNk+1 and
dk+1 with (25) we conclude that

∥dSNk+1 − dk+1∥ = ∥αSN
k − αk∥ ≤ 1

µ
λk∥αk∥ =

1

µ
λk∥dk+1∥. (27)

We now ready to provide the following key result to analyze the local convergence rate of our
algorithm, where we assume it converges to a strict local optimum x∗ such that H(x∗) ⪰ µI for
some µ > 0.

Lemma 8 Suppose the iterate of DRSOM xk converges to x∗ which satisfies H(x∗) ⪰ µI , when
xk is sufficiently close to x∗, then we have:

∥xk+1 − x∗∥ ≤ M

µ
∥xk − x∗∥2 + 1

µ
∥(Hk − H̃k)dk+1∥+

(
2L

µ2
+

1

µ

)
λk∥dk+1∥. (28)

Proof We first write

∥xk+1 − x∗∥ = ∥xk + dk+1 − x∗∥
≤ ∥xk + dNk+1 − x∗∥+ ∥dSNk+1 − dNk+1∥+ ∥dk+1 − dSNk+1∥,

(29)

where dNk+1 = −H−1
k gk is the standard Newton step and dSNk+1 = Vkα

SN
k is the subspace Newton

step with αSN
k defined by (23). The first term in (29) is upper bounded by M

µ ∥xk − x∗∥2 due
to the standard analysis in Newton’s method. To bound the second term, we note that αSN

k =
(V T

k HkVk)
−1V T

k gk with V T
k Vk = I as it is a solution to problem (23), which implies that

H̃kd
SN
k+1 = H̃kVk(V

T
k HkVk)

−1V T
k gk = VkV

T
k HkVkV

T
k Vk(V

T
k HkVk)

−1V T
k gk = VkV

T
k gk = gk,

where the last equality is due to VkV
T
k is the projection matrix of the subspace Lk and gk ∈ Lk.

Then, the second term can be further bounded above as follows

∥dSNk+1 − dNk+1∥ = ∥dSNk+1 +H−1
k gk∥

= ∥dSNk+1 −H−1
k H̃kd

SN
k+1∥

= ∥H−1
k (Hk − H̃k)d

SN
k+1∥

≤ ∥H−1
k ∥∥(Hk − H̃k)d

SN
k+1∥

≤ 1

µ
∥(Hk − H̃k)d

SN
k+1∥

≤ 1

µ

(
∥(Hk − H̃k)dk+1∥+ ∥(Hk − H̃k)(d

SN
k+1 − dk+1)∥

)
≤ 1

µ
∥(Hk − H̃k)dk+1∥+

1

µ
∥Hk − H̃k∥∥(dSNk+1 − dk+1)∥, (30)

Combining the above inequalities, we have that

∥xk+1 − x∗∥ ≤ M

µ
∥xk − x∗∥2 + 1

µ
∥(Hk − H̃k)dk+1∥+

(
1

µ
∥Hk − H̃k∥+ 1

)
∥dk+1 − dSNk+1∥

≤ M

µ
∥xk − x∗∥2 + 1

µ
∥(Hk − H̃k)dk+1∥+

(
2L

µ2
+

1

µ

)
λk∥dk+1∥,

(31)

14
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where the last inequality follows from Lemma 7 and max{∥Hk∥, ∥H̃k∥} ≤ L due to the Lipschitz
continuity of the gradient.

Now we are ready to complete the proof of Theorem 3.
Proof It suffices to further upper bound (28). We only consider the scenario that λk ≤ √

ϵ, as
otherwise the objective function has a amount of decrease 2

3M2 ϵ
3/2 at every iteration k by Lemma

5 and this will occur in a very limited times when xk is sufficiently close to x∗.
Since (8) holds, one has that

1

µ
∥(Hk − H̃k)dk+1∥ ≤ C

µ
∥dk+1∥2.

Moreover, as we adopt the fixed radius strategy, λk = 0 whenever ∥dk+1∥ < ∆. In the case of
0 < λk ≤ √

ϵ, we have λk ≤ √
ϵ = M

2 ∆ = M
2 ∥dk+1∥. Therefore, in both cases, we have

λk∥dk+1∥ ≤ M
2 ∥dk+1∥2. Consequently, (28) can be bounded above by

∥xk+1 − x∗∥ ≤ M

µ
∥xk − x∗∥2 + C

µ
∥dk+1∥2 +

(
2L

µ2
+

1

µ

)
M

2
∥dk+1∥2.

Note that

∥dk+1∥ ≤ ∥xk − x∗ + dk+1∥+ ∥xk − x∗∥
= ∥xk+1 − x∗∥+ ∥xk − x∗∥

≤ M

µ
∥xk − x∗∥2 + C

µ
∥dk+1∥2 +

(
2L

µ2
+

1

µ

)
M

2
∥dk+1∥2 + ∥xk − x∗∥

≤ M

µ
∥xk − x∗∥2 + ∥xk − x∗∥+O(∥dk+1∥2).

By rearranging the terms, we have

∥dk+1∥ −O(∥dk+1∥2) ≤
M

µ
∥xk − x∗∥2 + ∥xk − x∗∥. (32)

From the assumption xk converges to x∗, it holds that dk+1 → 0, when k is sufficiently large. Thus,
inequality (32) implies ∥dk+1∥ ≤ ∥xk − x∗∥, i.e. ∥dk+1∥ = O(∥xk − x∗∥), which in return shows
that ∥xk+1 − x∗∥ ≤ O(∥xk − x∗∥2).

B.4. Detailed discussion on Assumption 2

According to Lemma 6 and the last part of the proof for Theorem 3, Assumption 2 is required
only when λk ≤ √

ϵ. When the violation of Assumption 2 is identified for some λk ≤ √
ϵ, we

apply the Lanczos method [5, 8, 10] to generate a larger subspace to form an approximated Hessian
that satisfies Assumption 2 and the algorithm terminates if the resulting λk+1 ≤ √

ϵ. However,
it is possible that the expanded subspace due to the Lanczos method, in return produces a larger
λk+1 >

√
ϵ and in this case we check Assumption 2 and repeat the above procedure when λk drops

below
√
ϵ again. Therefore, we call Lanczos method periodically whenever λk ≤ √

ϵ. Fortunately,
for every iteration with λk ≤ √

ϵ, the objective function has a amount of decrease 2
3M2 ϵ

3/2 by
Lemma 5. Thus the number of times to invoke Lanczos method is very limited when xk is close to
convergence.
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Appendix C. Extended Numerical Results

To demonstrate the efficacy of DRSOM, we implement the algorithm using the Julia programming
language for convenient comparisons to first- and second-order methods. Most of the experiments,
except the neural networks, are handled by the Julia version on a desktop of Mac OS with a 3.2
GHz 6-Core Intel Core i7 processor. The competing algorithms, including the (accelerated) gradient
descent method, LBFGS, and Newton trust-region method, are computed via a third-party package
Optim.jl1, including a set of line search algorithms in LineSearches.jl2.

We also implement a version in PyTorch that enables experiments in neural network training.
For this part, the DRSOM runs on a Ubuntu desktop with Intel Xeon CPU E5-2698 v4 processor
and 1 NVIDIA Tesla V100. We provide a comparison of SGD and Adam. Note the SGD and Adam
optimizer used in our experiments is provided by the official implementation of PyTorch3.

A complete description of “Trust-region” style Algorithm 1 is given in Algorithm 2. We use the
standard updating mechanism for ∆k as in [8].

Algorithm 2: A DRSOM algorithm using trust-region updates

Data: Given kmax, β1 < 1 < β2, ζ1 < ζ2 ≤ 1; ∆̄ > 0,∆0 ∈ (0, ∆̄), and η ∈ [0, ζ1);
for k = 1, ..., kmax do

Solve (3) for αk, obtain dk+1 = −α1
kgk + α2

kdk, and ρk;
if ρk ≤ ζ1 then

Decrease ∆k+1 = β1∆k

else
if ρk > ζ2 and ∥dk+1∥ = ∆k then

∆k+1 = min
{
β2∆k, ∆̄

}
else

∆k+1 = ∆k

end
end
if ρk > η then

xk+1 = xk + dk+1

else
xk+1 = xk

end
end

To use a “Radius-Free” DRSOM, we briefly describe a strategy to update µk. Note that the
“Radius-Free” parameter µk is designed as a wild estimate to λk for (3). We adjust µk by the
following rule:

1. For details, see https://github.com/JuliaNLSolvers/Optim.jl
2. For details, see https://github.com/JuliaNLSolvers/LineSearches.jl
3. For details, see https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
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Let µ1 ≤ µ2 be the eigenvalues of Hk in the subspace, consider a simple adaptive rule to put µk

in a desired interval [µ
k
, µk]:

µ
k
= max{0,−µ1}, µk = max{µ

k
, µ2}+ µM

γk+1 =

{
β2γk, ρk ≤ ζ1

max{γ,min
{√

γk, β1γk
}
, ρk > ζ2}

µk = γk · µk +max {1− γk, 0} · µk

(33)

where γk > 0, µM is a big number to bound µk from above, and γ is the minimum level for γk.
Furthermore, we also let β1 < 1 < β2 in the same spirit of Algorithm 2. Specifically, we increase
γk if the model reduction is not accurate according to ρk.

In the above procedure (33), we adjust µk by γk instead, which is expected to be less affected
by the eigenvalues. If γk approaches to 0, then µk is close to µ

k
which implies H̃k is almost positive

semi-definite. Otherwise, γk induces a large µk so to give a small trust-region radius.

C.1. Logistic Regression

We consider a multinomial logistic regression model for the MNIST dataset. The training set con-
tains 60, 000 pictures for handwritten digits; the test set has 10, 000 pictures. We present the clas-
sification performance of DRSOM for 10 and 40 epochs in comparison to a popular stochastic
first-order method, SAGA, and a second-order method, LBFGS. Specifically, we run DRSOM and
LBFGS in full-batch. Then, we collect the zero-one classification loss of training (training error)
and test data (test error) in Table 1. These results show that DRSOM is comparable to SAGA and
LBFGS.

Epoch Method Training error Testing error

10 SAGA 0.0699 0.0779
10 LBFGS 0.1245 0.1175
10 DRSOM 0.1149 0.1076
40 SAGA 0.0690 0.0759
40 LBFGS 0.0750 0.0783
40 DRSOM 0.0760 0.0819

Table 1: Performance of DRSOM on MNIST classification compared to other algorithms

C.2. L2 − Lp Minimization

We next test the performance of DRSOM for nonconvex L2 − Lp minimization. Recall L2 − Lp

minimization problem (Chen [6], Chen et al. [7], Ge et al. [12]):

ϕ∗ = min
x∈Rm

ϕ(x) =
1

2
∥Ax− b∥22 + λ∥x∥pp, (34)
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where A ∈ Rn×m, b ∈ Rn, 0 < p < 1. To overcome nonsmoothness of ∥ · ∥p, we apply the
smoothing strategy mentioned in [6]:

f(x) = ∥Ax− b∥22 + λ
n∑

i=1

s(xi, ε)
p, (35)

where s(xi, ε) is a smoothed approximation of |xi| and ε is a small pre-defined constant ε > 0:

s(x, ε) =

{
|x| if |x| > ε
x2

2ε + ε
2 if |x| ≤ ε

(36)

We randomly generate datasets with different sizes n,m based on the following procedure. The
elements of matrix A are generated by Aij ∼ N (0, 1) with 15% sparsity of 15%. To construct the
true sparse vector v ∈ Rm, we let for all i:

vi ∼
{
0 with probability p = 0.5

N
(
0, 1

n

)
otherwise

Then we let b = Av + δ where δ is the noise generated as δi ∼ N (0, 1), ∀i. The parameter λ
is chosen as 1

5∥AT b∥∞. We generate instances for (n,m) from (100, 10) to (1000, 100). We set
p = 0.5 and the smoothing parameter ε = 1e−1.

Next, we test the performance of DRSOM and competing algorithms, including a first-order
representative AGD, and two second-order methods, including LBFGS and the Newton trust-region
method (Newton-TR). The AGD is facilitated with the Zhang-Hager line-search algorithm (see
[25]). We report the iteration number needed to reach a first-order stationary point at a precision of
1e−6, precisely,

|∇f(xk)| ≤ ϵ := 1e−6

The iterations needed for a set of methods are reported in the Table 2. These results show that

n m DRSOM AGD LBFGS Newton TR

100 10 18 43 14 6
100 20 31 72 23 7
100 100 47 136 42 10
200 10 21 27 15 5
200 20 23 45 21 6
200 100 40 131 39 9

1000 10 13 16 9 4
1000 20 16 23 13 5
1000 100 19 32 16 5

Table 2: Performance of DRSOM on (34) compared to other algorithms: iterations needed for pre-
cision ϵ = 1e−6

the DRSOM is fairly close to the full-dimensional second-order methods, especially the original
Newton trust-region method; it is far better than AGD in most test cases.
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C.3. Sensor Network Localization

We next visit another nonconvex optimization problem, namely, the Sensor Network Localization
(SNL). The SNL problem is to find coordinates of ad hoc wireless sensors given pairwise distances
in the network. Fruitful research has been found for this problem, among which the approach based
on Semidefinite Programming Relaxation (SDR) has witnessed great success; see, for example,
Biswas and Ye [1], Wang et al. [19], and many others. We here use the notations in [19].

Let n sensors be points in Rd, besides, assume another set of m known points (usually referred
to as anchors) whose exact positions are a1, ..., am. Let dij be the distance between sensor i and j,
and d̄ik be the distance from the sensor i to anchor point k. We can then define the set of distances
as edges in the network:

Nx = {(i, j) : ∥xi − xj∥ = dij ≤ rd} , Na = {(i, k) : ∥xi − ak∥ = dik ≤ rd} , (37)

where rd is a fixed parameter known as the radio range. The SNL problem considers the following
quadratic constrained quadratic programming (QCQP) feasibility problem,

∥xi − xj∥2 = d2ij ,∀(i, j) ∈ Nx

∥xi − ak∥2 = d̄2ik,∀(i, k) ∈ Na

(38)

Since the problem is nonconvex, the SDR approaches the above problem by a two-stage strategy. In
the first step, we use semidefinite programming to solve a lifted convex relaxation:

min 0 • Z
s.t. Z[1:2,1:2] = I,

(0; ei − ej) (0; ei − ej)
T • Z = d2ij ∀(i, j) ∈ Nx,

(−ak; ei) (−ak; ei)
T • Z = d̄2ik ∀(i, k) ∈ Na

Z ⪰ 0.

(39)

We let I be the identity matrix of dimension 2, ei be a n-vector of zeros except for a one at i-th
entry. Z is the positive semidefinite matrix, such that,

Z =

[
I X
XT Y

]
, (40)

which is equivalent to state Y ⪰ XTX . If rank(Y ) = 2, the SDR solves the original problem;
otherwise (Y,X) provides initial solution and needs further refinement. For example, at the second
stage, we can solve the following nonlinear least-square problem (NLS):

min
X

∑
(i<j,j)∈Nx

(∥xi − xj∥2 − d2ij)
2 +

∑
(k,j)∈Na

(∥ak − xj∥2 − d̄2kj)
2. (41)

We may find local solutions by a gradient descent method (GD); see, for example, [1]. Al-
ternatively, we apply the DRSOM to the sensor network localization problem. We here provide a
randomly generated example with 80 points, 5 of which are anchors. We set the radio range to 0.5
and the random distance noise nf = 0.05. We add a line search for GD that guarantees the strong
Wolfe condition, see [18, p. 60]. We terminate at an iterate xk if ∥g(xk)∥ ≤ 1e−6.
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Our results basically show that: if we initialize the NLS problem (41) for SNL by the SDR (39),
then DRSOM and GD are comparable. However, if we do not have the SDR solution at hand, the
DRSOM may usually provides better solutions than GD, which shows the benefit of the second-
order optimality condition.

Figure 1 illustrates the realization results of GD and DRSOM with the SDR initialization. In
this case, both algorithms are able to guarantee convergence to the ground truth.
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Figure 1: Comparison of localization by GD and DRSOM with SDR initialization. The rectangles
and crosses represent the anchors and true locations, respectively. The blue circles are
solutions by SDR, and the red circles are final solutions of GD/DRSOM.

As a comparison, Figure 2 depicts the case without solving SDR first. We use the same param-
eter settings as for the previous case. The GD and DRSOM are initialized by Xi := 0, i = 1, ..., n.
In this particular case, the GD fails to recover true positions; to our experience, it converges to a
strict local minimum x∗ such that H(x∗) ≻ 0. However, the DRSOM can sometimes provide ac-
curate solutions even without the SDR initialization. In this example, we rigorously provide a case
where the DRSOM may result in better local results (in this case, the global one) than the first-order
methods; despite that, we only have optimal subspace guarantees in theory.

C.4. Neural Networks

In this section, we implement a vanilla Mini-Batch DRSOM to train neural networks. Our imple-
mentation is straightforward: for each mini-batch, we calculate the required gradients and Hessian-
vector products, then the computation proceeds just like the “full-batch” version. Finally, we test our
Mini-Batch DRSOM optimizer and compare the performance with the SGD and Adam optimizer.

C.4.1. FASHION-MNIST

We train a Neural Network model for classification on Fashion-MNIST, consisting of a training
set of 60,000 examples and a test set of 10,000 examples [20]. The dataset is constructed from
images with one of 10 labels, including T-shirt/top, bag, dress and so on4, . In our test,

4. For details, see https://github.com/zalandoresearch/fashion-mnist
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Figure 2: Comparison of localization by GD and DRSOM without SDR initialization. The meaning
of each symbol is the same as Figure 1.

we adopt a neural network model with two convolutional and two fully-connected layers5, which
has about 16.84 million parameters. For SGD, we test on different momentum coefficients µ ∈
{0.85, 0.9, 0.95, 0.99} named after SGD−µ. Also, the Adam and SGD are set with the learning rate
at 1e−3. All optimizers are tested with a batch size of 128.

From Figure 3, we see that in 20 epochs, the Adam, SGD (SGD-µ), and DRSOM are both able
to reach over 90% accuracy on the hold-out test set. The DRSOM, even with a naive Mini-batch
strategy, is the best in terms of loss and accuracy in the training set. It also has the best test accuracy
compared to the competitors. In our preliminary experiments, the DRSOM is two times slower than
Adam per-iteration in running this case.

C.4.2. CIFAR10

To further take a look in deep neural networks, we also train a ResNet18 model (He et al. [13]) for
CIFAR10. In our preliminary experiments, the vanilla DRSOM is five times slower than Adam in
running time at the same iteration number; thus, we only run DRSOM in 50 epochs. For Adam, we
collect the results in 100 epochs. All optimizers are tested with a batch size of 128. For Adam, we
provide a learning rate scheduler to decay the learning rate by a factor of 2 in every k epochs started
at an initial rate 1e−3; we name these variants by Adam-k where k ∈ {30, 40}.

To enable fair comparison, for DRSOM, we increase the lower bound of γ by the rule, γ :=
γ · σ, σ ∈ {100, 1000}, in every 10 epochs corresponding to the update policy (33). We apply the
strategy to mimic a mechanism of reducing the learning rate. Using the same fashion, we call them
DRSOM-σ. We report the results in Figure 4. As the results show, the DRSOM has a sharp rate
of increase in the beginning; with little tuning efforts, DRSOM-1e3 (in 50 epochs) has competitive
results to Adam in 100 epochs. These preliminary results, to our belief, motivate future research
and better implementation of the DRSOM.

5. For details, see https://github.com/ashmeet13/FashionMNIST-CNN/blob/master/Fashion.py
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Figure 3: Training and test results of Adam, SGD, and DRSOM for a Neural network on Fashion-
MNIST dataset
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Figure 4: Training and test results of Adam and DRSOM for ResNet18 on CIFAR10
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