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Abstract
Kernel Support Vector Machines (Kernel SVM) provide a powerful class of tools for classifying
data whose classes are best identified via a nonlinear function. While a Kernel SVM is usually
treated as a Quadratic Program (QP), its solution is usually obtained using stochastic gradient de-
scent (SGD). In this paper we treat the Kernel SVM as a Stochastic Quadratic Linear Programming
(SQLP) problem which motivates a decomposition-based algorithm that separates parameter choice
from error estimation, with the latter being separable by data points. In order to take advantage of
the quadratic structure due to the kernel matrix we introduce a conjugate subgradient approach.
While convergence of the new method can be shown, the focus of this brief paper is on computa-
tional evidence which illustrates that our method maintains the scalability of SGD, while improving
the accuracy of classification/optimization.

1. Introduction

In this paper, we focus on Kernel SVM by treating it as a two-stage SQLP represented as follows:

min
α

f(α) =
1

2
⟨α,Kα⟩+ 1

m

m∑
i=1

max{0, 1− wi⟨α,Ki⟩}, (1)

where Ki is the i-th row of the kernel matrix, and m represents the number of data points.
It is well-known that one can solve (1) by adopting specialized first-order methods such as

Pegasos [7] where the subgradient calculations can be carried out very rapidly and in parallel (for
a given α). However, for instances in which the condition number of the kernel matrix is large,
first-order methods are provably inaccurate [5].

We propose a new algorithm that will accommodate both the curvature of quadratic functions,
as well as the decomposition of subgradients by data points, as is common in stochastic program-
ming. This combination includes the computational power of non-smooth conjugate gradient meth-
ods [8], sequential sampling and decomposition to provide both computational reliability as well as
a well-defined convergence rate. While these theoretical results are provided in a companion paper
(available from the authors), this paper only provides the computational evidence.

The rest of the paper is organized as follows: Stochastic Conjugate Subgradient(SCS) Algorithm
appears in §2, the computational comparison with a first order method (Pegasos) appears in §3 and
our conclusions are provided in §4.

© D. Zhang & S. Sen.



SCS ALGORITHM: THE EVIDENCE

Algorithm 1 Stochastic Conjugate Subgradient (SCS) Algorithm
1 ε > 0, τ > 0, δ0, η1 > 1, η2 > 0, γ > 1 and k ← 0.
2 Randomly generate s0 samples from the data set and build an initial RBF kernel Q0 based on the given samples.
3 Set a feasible solution α̂0 ∈ Rs0 and an initial direction d0 ∈ Rs0

4 f0(α) =
1
2
⟨α,Q0α⟩+ 1

s0

∑s0
i=1 max{0, 1− wi⟨α,Q0

i ⟩}.
while ||dk|| > ε do

5 k = k + 1
6 Obtain gk ∈ ∂fk−1(α̂k), Gk = {gk,−dk−1} and calculate dk = −Nr(Gk).
7 Apply Algorithm 2 to find step size tk.
8 Set αk = α̂k + tkdk.
9 Next randomly generate a set of new samples sk of cardinality |sk|.

10 Define Sk ≜ Sk−1 ∪ sk.
11 Let βk = (αk,

−→
0 ) ∈ R|Sk|, β̂k−1 = (α̂k−1,

−→
0 ) ∈ R|Sk|; build Qk using Sk.

12 Construct fk(α) = 1
2
αTQkα+ 1

Sk

∑Sk
i=1 max{0, 1− wi⟨α,Qk

i ⟩}
13 Randomly generate a set of new samples Tk of cardinality |Sk| independent of Sk−1.
14 Construct f̂k(α) = 1

2
α⊤Q̂kα+ 1

Sk

∑Sk
i=1 max{0, 1− ŵi⟨α, Q̂k

i ⟩} based on Tk.

if fk(βk)− fk(β̂
k−1) ≤ η1(f̂k(α

k)− f̂k(α̂
k−1)) and ||dk|| > η2δk then

15 α̂k ← βk, δk ← min{γδk−1,
ε
ξ
}

else
16 α̂k ← β̂k−1, δk ← δk−1

γ

end
end

2. Stochastic Conjugate Subgradient Algorithm

The main ingredients of the algorithm 1 include three important components:

• Sequential function approximation. In many cases we have a fixed number of data points.
However, our focus is on situations where the data can be queried from an oracle sequentially.
As a result, we will not fix the value of m in (1). Instead, we use an online version of sample
average approximation (OSAA) [2, 3] to approximate function f using fk, where

fk(α) =
1

2
αTQkα+

1

Sk

Sk∑
i=1

max{0, 1− wi⟨α,Qk
i ⟩}, (2)

Using Hoeffding’s Inequality, [4], we can use (2) to approximate (1) to an arbitrarily high
level of accuracy as the number of samples increases.

• Direction finding. This idea is inspired by Wolfe’s non-smooth conjugate subgradient method
which uses the smallest norm of the convex combination of the previous search direction
(dk−1) and the current subgradient (gk).

• Choice of step size. This is achieved by combining concepts of both trust region and line
search methods [6, 8].

Most of the logic of Algorithm 2 is motivated by Wolfe’s Line Search Algorithm [8]. The output
of the step size will satisfy two metrics: (i) Identify a set L which includes points that improve the
objective function value, (ii) Identify set R for which the directional derivative estimate is improved.
The algorithm seeks points which belong to L ∩R.
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Algorithm 2 Line Search Algorithm
1 Set m2 < m1 < 0.5 and b = δk

n
.

2 Let g(t) ∈ ∂f̂k−1(α̂k + t · dk) and define the intervals L and R.

L = {t > 0 | f̂k−1(α̂k + t · dk)− f̂k−1(α̂k) ≤ −m1||dk||2t},

R = {t > 0 | ⟨g(t), dk⟩ ≥ −m2||dk||2}.

3 Choose t||dk|| ∈ [b, δk].
if t ∈ L\R then

4 t = 2t until t ∈ R or t||dk|| > δk. Set I = [t/2, t].
if t||dk|| > δk then

5 Return t/2.
else

if t ∈ L ∩R then
6 Return t

else
while t /∈ L ∩R do

7 Set t be the middle point of I
if t ∈ R\L then

8 Replace I by its left half
else

9 Replace I by its right half
end

end
end

end
end
if t ∈ R\L then

10 t = t/2 until t ∈ L or t||dk|| < b. Set I be the interval of [t, 2t].
if t ∈ L ∩R then

11 Return t

else
if t||dk|| < b then

12 Return t = 0

else
13 Repeat line (7)-(9) while t /∈ L ∩R.

end
end

end
14 Return t

3. Computational Results

Our computational experiments are based on data sets available at the UCI Machine Learning
Repository [1]. Our study considers three different methods: Kernelized Pegasos algorithm1, SCS
algorithm and Wolfe’s algorithm [8]: Wolfe uses objective function (1) while Pegasos and SCS
use (2). However, in order to compare the progress of the objective function values for different
algorithms, we will track the values of (1) for all three algorithms. The values of {f(α̂k)}k=50

k=1 and

1. The computations below are based on our implementation of the Pegasos Algorithm.
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{f(α̂k)}k=−1
k=−50 are shown in Figures 1 and 2 (In the interest of brevity, we only illustrate the results

for small data sets).

Breast Cancer Heart Failure Wine Quality

Figure 1: {f(α̂k)}k=50
k=1 for different combinations (data,algorithm).

Breast Cancer Heart Failure Wine Quality

Figure 2: {f(α̂k)}k=−1
k=−50 for different combinations (data,algorithm).

Remark: (a) For objective function value, SCS is lower than the Pegasos algorithm. (b) SCS also
converges faster than the Pegasos Algorithm. (c) The beauty of the Pegasos algorithm is that it
provides a decision rule without providing a solution to (1). This decision rule provides a classifier
without any reference to optimality. On the other hand, the SCS algorithm is truly an optimization
algorithm with a stopping rule in which the steps (and stopping) are guided by dk (||dk|| < ε).

The performance of all three algorithms for different data sets are given in Table 1. Since
Wolfe’s algorithm requires the entire data set, the instances with very large data sets are beyond its
reach, and are reported by N/A in Table 1. The accuracy and time reported in the Table 1 are based
on the average of 20 independent runs for each pair (data, algorithm) using different random seeds.

4. Conclusion

Our approach leads to a class of online algorithms that go beyond first-order approximations. It in-
cludes several features of Wolfe’s method (e.g., stability and good convergence rate) as well as the
online aspects of Pegasos which promotes good computational times (see figure(1)). In contrast to
the Pegasos algorithm, we find that the optimization performance of SCS algorithm is more reliable
and provides consistently lower objective values (see Figures 1 and 2). It appears that such reliabil-
ity may be difficult to achieve using first-order methods without additional efforts in fine-tuning.
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Table 1: Classification performance for different data sets

heart at-
tack

breast
cancer

wine
quality

avila
Bible

magic
tele-
scope

room
occu-
pancy

Skin-
Nonskin

samples 273 500 680 2000 5000 7500 200000

Pegasos
accuracy 0.833 0.95 0.855 0.714 0.735 0.974 0.93

time(s) 0.750 1.147 3.933 5.602 25.992 56.549 176.454

SCS
accuracy 0.833 0.97 0.86 0.718 0.740 0.976 0.97

time(s) 6.121 4.921 12.497 38.266 33.256 39.887 19.684

Wolfe
accuracy 0.833 0.97 0.87 0.726 N/A N/A N/A

time(s) 1.481 2.289 4.195 32.978 N/A N/A N/A
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