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Abstract
We detail the global convergence rates of a regularized generalized Gauss-Newton algorithm ap-
plied to compositional problems with surjective inner Jacobian mappings. Our analysis uncovers
several convergence phases and identifies key condition numbers governing the complexity of the
algorithm. We present an implementation with a line-search adaptive to unknown constants.
Keywords: Generalized Gauss-Newton, Global Convergence

1. Introduction

We consider compositional optimization problems of the form

min
w∈Rp

{f(w) := h(g(w))} , (1)

with h : Rp→Rq strongly convex, g : Rq→R nonlinear and arg minw∈Rp f(w)6=∅. Such problems
arise in numerous applications such as in nonlinear control [2, 14, 25], in deep learning applications,
see, e.g., [28] and references therein, or in any nonlinear least-squares problems, such as phase
retrieval [12], see [3] for an overview. For example, a nonlinear control problem can take the form

min
u0,...,uτ−1∈Rdu

x0,...,xτ∈Rdx

∑τ
t=1 ht(xt) subject to xt+1 = φt(xt, ut), for t ∈ {0, . . . , τ − 1}, x0 = x̄0,

where, at time t, xt is the state of the system, ut is the control applied to the system, φt is the
discrete time dynamic, ht is the cost on the state and x̄0 is a fixed initial point. The problem is
entirely characterized by the choice of the control variables and can then be reformulated as

min
w=(u0;...;uτ−1)∈Rτdu

h(g(w)) with g(w) = (x1; . . . ;xτ ) h(x) =
∑τ

t=1 ht(xt),

s.t. xt+1 = φt(xt, ut)

where h encapsulates the total cost on the trajectory x = (x1; . . . ;xτ ) and g is the function that,
at a given set of control variables w = (u0; . . . ;uτ−1), associates the corresponding trajectory.
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Similarly, a feed-forward deep network of τ layers applied to an input x such as an image reads

ψ(x,w) = zτ s.t. zt = φt(zt−1, wt) for t ∈ {1, . . . , τ}, w = (w1; . . . ;wτ ) z0 = x,

where wt are the parameters of the tth layer φt that consist, for example, for a multi-layer per-
ception, a nonlinear function composed with an affine function. Given a dataset of input-output
pairs (xi, yi)

n
i=1 and a loss ` measuring the error of predicting ŷ instead of y as `(ŷ, y), training a

deep network consists in minimizing the loss incurred by predicting the outputs through the deep
network, i.e., solving minw∈Rp

∑n
i=1 `(φ(xi, w), yi), which can be rewritten as

min
w∈Rp

h(g(w)) with g(w) = (φ(x1, w); . . . ;φ(xn, w)), h(z) =
∑n

i=1 `(zi, yi).

Provided that g, h are differentiable, the objective in (1) can be tackled by standard first order
methods such as a gradient descent [18, 28]. Here we rather consider taking advantage of the com-
positional structure of the problem to apply a Gauss-Newton type algorithm provided that the outer
function h is also twice differentiable [19]. Namely, we consider updating iterates by minimizing
a quadratic approximation of the outer function h on top of a linear approximation of g around
the current iterate with an additional regularization, that is, we consider Regularized Generalized
Gauss-Newton (RGGN) iterates of the form

wk+1 = arg min
w∈Rp

{
q
g(wk)
h (`wkg (w)) +

νk
2
‖w − wk‖22

}
= wk − (∇g(wk)∇2h(g(wk))∇g(wk)

> + νk I)−1∇g(wk)∇h(g(wk)), (2)

for νk ≥ 0 a regularization that may depend on the current iterate, where for a function f we denoted
by `xf (y) = f(x) +∇f(x)>(y − x) and qxf (y) = f(x) +∇f(x)>(y − x) + (y − x)>∇2f(x)(y −
x)/2 the linear and quadratic approximations of f around x. Updates of the form (2) generalize
the classical Gauss-Newton algorithm [6, 17, 19] by considering a generic outer function h rather
than the usual Euclidean squared norm [9] and by adding a regularization scheme in the spirit of
Levenberg-Marquardt methods [16].

We consider deriving global convergence rates under the following additional assumption

∃σg > 0 s.t. ∀w ∈ Rp, σmin(∇g(w)) := inf
λ∈Rq

‖∇g(w)λ‖2
‖λ‖2

≥ σg > 0, (3)

where ∇g(w) = (∂wigj(w))1≤i≤p,1≤j≤q ∈ Rp×q denotes the gradient of g, i.e., the transpose of
the Jacobian of g. Assumption (3) ensures that the Jacobian mapping v → ∇g(w)>v of the inner
function g is surjective such that any problem of the form ∇g(w)>v = z for w ∈ Rp and z ∈ Rq

can be solved in terms of v ∈ Rp. Assumption (1) has been previously studied for degenerate non-
linear systems of equations [1, 17] or nonlinear control problems with some adequate controllability
conditions [23].

In this work, we show that given condition (3) and suitable smoothness assumptions, by taking
regularization terms proportional to the norm of the outer function at the current iterate, an RGGN
algorithm converges globally with a local quadratic rate. In Sec. 2, we first analyze the RGGN
algorithm for an ideal choice of regularization given the knowledge of all constants governing the
problem and then propose an implementation with a line-search on the regularization parameter.
Comparisons with previous work are presented in Sec. 3 after having detailed our results. Addi-
tional global convergence results for convex outer functions satisfying a generic Polyak-Łojasiewicz
inequality and local convergence proofs for self-concordant outer functions are presented in Theo-
rem 2 and Theorem 5 respectively in Appendix B.
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2. Convergence Analysis

RGGN algorithm with ideal regularization choice. Our main theorem is presented in Theo-
rem 1 with detailed assumptions and constants. We first present the rationale behind our results.

First, note that since g is not linear, the objective f = h ◦ g is a priori not convex even if h is
convex. Yet, global convergence of, e.g., first order methods can be ensured if the objective satisfies
a gradient dominating property, i.e., if there exists m > 0 such that ‖∇f(w)‖22 ≥ m(f(w) −
minv∈Rp f(v)) [4, 15, 20]. By considering a µh-strongly convex outer function and Assumption (3),
we have that the objective satisfies such gradient dominating property as we have for any w ∈ Rp,
denoting x = g(w),

‖∇f(w)‖22 = ‖∇g(w)∇h(x)‖22 ≥ σ2g‖∇h(x)‖22 ≥ σ2gµh
(
h(x)− min

y∈Rq
h(y)

)
. (4)

Since the set {w : ∇f(w) = 0} is not empty as we assumed that the problem had a minimizer,
we conclude that minv∈Rp f(v) = miny∈Rq h(y) and the objective satisfies a gradient dominating
property.

By choosing a large enough regularization, the updates of the RGGN algorithm approach the
ones of a gradient descent as we have for νk � 1, wk+1 ≈ wk − ν−1k ∇f(wk), which suggests that
the RGGN algorithm can converge globally at a linear rate just as a gradient descent given (4) [4, 20].
Formally, we consider taking a regularization νk that may depend on the current wk ∈ Rp, s.t.

f (wk+1) ≤ min
w∈Rp

{
q
g(wk)
h (`wkg (w)) +

νk
2
‖w − wk‖22

}
= f(wk)−

1

2
∇f(wk)

>(∇g(wk)∇2h(g(wk))∇g(wk)
> + νk I)−1∇f(wk). (5)

The above condition ensures that f (wk+1) − f(wk) ≤ −αk‖∇f(wk)‖22, where αk depends on
the regularization νk and the properties of the objective. Hence, using (4), by taking a constant
regularization ensuring (5), we get a global linear convergence rate.

The global rate of convergence sketched above can be further improved by analyzing the local
behavior of the algorithm around a solution. Namely, if g satisfies (3), then the matrix∇g(w)>∇g(w)
is invertible for any w ∈ Rp. Denoting xk = g(wk), G = ∇g(wk) and H = ∇2h(xk), we then
have by standard linear algebra, that wk+1 − wk = −G(G>G)−1(H + νk(G

>G)−1)−1∇h(xk).
Consider then the variables xk = g(wk) associated to a single step of the RGGN algorithm,

xk+1 = g(wk+1) ≈ g(wk) +∇g(wk)
>(wk+1 − wk)

= xk − (∇2h(xk) + νk(∇g(wk)
>∇g(wk))

−1)−1∇h(xk).

For ν � 1, the difference xk+1−xk is then close to a Newton direction on the outer function h. The
RGGN algorithm can then be analyzed as an approximate Newton method on the outer function,
which suggests that it can have a local quadratic convergence rate if νk decreases fast enough.

To blend global convergence and local quadratic convergence, we observe that to satisfy con-
dition (5), the regularization can be chosen to be proportional to the norm of the gradient of the
outer function at the current iterate, i.e., νk = ν̄k‖∇h(g(wk))‖2 for ν̄k bounded above by a constant
which ensures that νk tends to 0 with the iterations k. Theorem 1 presents then the total complexity
of an RGGN algorithm for strongly convex outer functions h with an ideal choice of regularization.
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Theorem 1 Consider problems of the form (1) for an outer function h µh-strongly convex with
Lh-Lipschitz continuous gradients, Mh-Lipschitz-continuous Hessians and an inner function g `g-
Lipschitz-continuous with Lg-Lipschitz-continuous gradients satisfying (3).

The number of iterations of an RGGN algorithm (2), with regularizations

νk =

(
1 +

α

2(1 + θg‖∇h(g(wk))‖2/(
√
µhρg))

)
Lg‖∇h(g(wk))‖2, (6)

needed to reach an accuracy ε is at most

k(δ0, ε) := 4θg

(√
δ0 −

√
ε
)

+ 2ρh ln

(
δ0
ε

)
+ 2α ln

(
θg
√
δ0 + ρg

θg
√
ε+ ρg

)
, (7)

where ρh = Lh/µh, ρg = `g/σg, θg = Lg/(σ
2
g
√
µh), θh = Mh/(2µ

3/2
h ), α = 4ρ2gρh(β + 1),

β = Mh`
2
g/(3LgLh) and δ0 = f(w(0))−minw∈Rp f(w).

If the desired target accuracy ε is smaller than a gap δ = 1/(32ρh(θh(1 +
√
ρhρ

3
g/3) +√

ρhθg(1 + ρgρh))2) which determines a quadratic convergence phase, the number of iterations
of an RGGN algorithm, with regularization νk defined above, needed to reach the accuracy ε is at
most k(δ0, δ) + ln ln(ε−1).

The constants appearing in the complexity bound are (i) the condition number ρh = Lh/µh
of the outer function h, (ii) the condition number ρg = `g/σg of the gradient of g, (iii) a constant
θh = Mh/(2µ

3/2
h ) that is a bound on the self-concordance parameter of the outer function h [18,

Section 5], (iv) a constant θg = Lg/(σ
2
g
√
µh) whose dimension is the same as θh, i.e., the inverse of

the squared root of the objective. Finally the terms α and β are additional dimension independent
constants that act as additional condition numbers.

After k iterations of the RGGN algorithm with regularizations defined as in (6), the number of
remaining iterations to reach an accuracy ε ≥ δ is bounded as k(δk, ε), that is dominated by the
term 4θg

√
δk as long as δkθ2g ≥ C(δk, ε)

2(α + ρh)2, where C(δk, ε) entails logarithmic terms in
δk, ε. Hence, R = 1/(θg(α + ρh))2 acts as a radius of linear convergence, since for δk ≤ R, the
dominating terms in the complexity bounds are only logarithmic in the relative gap δk/ε.

The complexity bound presented in Theorem 1 reveals then three phases of convergence: (i) the
number of iterations to reach some linear convergence determined by the first term in the complexity
bound (7), (ii) the number of iterations to reach the quadratic convergence rate that is captured by
the logarithmic terms in the complexity bound (7), (iii) the quadratic convergence phase once δk is
smaller than the gap of local quadratic convergence δ.

RGGN Algorithm with Line-Search Procedure. Theorem 1 presents an ideal implementation
of the RGGN algorithm given the knowledge of all constants to define the regularizations. We
can modify the implementation of the RGGN step to select regularizations of the form νk =
ν̄k‖∇h(g(wk))‖2 that satisfy a sufficient decrease condition by searching over the scaled regu-
larization ν̄k. Namely, given an iterate wk and a past scaled regularization ν̄k−1, we can compute
the next iterate by searching over t = 0, 1, . . . , such that the iterate wk+1 defined in (2) with
νk = 2tν̄k−1‖∇h(g(wk))‖ satisfies (5). The chosen scaled regularization ν̄k = 2t

∗
ν̄k−1 for t∗ the

minimal integer ensuring (5) is kept to initialize the search for the next iterate. The overall algorithm
is presented in Algo. 1 in Appendix B.
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The proposed search on the scaled regularization parameter preserves the complexity bounds
given in Theorem 1 up to a logarithmic factor, both in terms of global and local rates, as shown in
Corollary 8 in Appendix B.

Textbook implementations of Gauss-Newton methods methods consider a line-search of the
form wk+1 = wk − γvk for vk = −(∇g(wk)∇2h(g(wk))∇g(wk)

>)−1∇g(wk)∇h(g(wk)) for γ a
tunable parameter. Provided that vk is well-defined, it can be shown to be a descent direction [19],
which ensures the termination of such line-search. Here we rather consider using a regularization ν
which ensures that the steps of the RGGN algorithm are always defined. By varying the regulariza-
tion parameter, our method is similar to trust-region methods as done by, e.g., [1].

We present numerical illustrations of the convergence of these algorithms on some nonlinear
control problems in Appendix D, where we observe both a global convergence and a fast local
convergence of the RGGN algorithm towards an optimal objective.

3. Comparisons to Previous Work

Levenberg-Marquardt methods. Convergence of regularized Gauss-Newton algorithms, i.e.,
Levenberg-Marquardt methods [16], was studied by e.g. [1, 8, 11, 27, 29]. [1] summarizes the
convergence results up to date. [1, Theorem 3.1] shows global convergence rates to stationary
points at a polynomial rate. Though these easily translate to global convergence guarantees pro-
vided that the non-linear mappings have surjective Jacobians as shown, e.g., by [26, Corrolary 2.1],
our results improve on the resulting polynomial rate by detailing the computational complexity of
the algorithm as the sum of a constant term depending on the initial gap, a logarithmic term to
reach the region of quadratic convergence and a term depending on the logarithm of the logarithm
of the target auccracy. [1] and references therein provide local quadratic convergence rates under
an error bound condition [1, Assumption 4.2], [27, Eq. (1.6)]. Our assumption on the surjectivity
of the Jacobians is stronger than an error bound but it allows a simple treatment of the regularized
generalized Gauss-Newton algorithms. Moreover, we are able to characterize precisely the region
of quadratic convergence for a simple regularized Gauss-Newton algorithm using a bound on the
smallest singular value of the transpose of the Jacobian (by considering the caseMh=θh=0, ρh=1).

Modified Gauss-Newton method, a.k.a. prox-linear algorithm. Closer to our approach is the
work of [17] where the assumption of surjective Jacobians was analyzed to provide global conver-
gence guarantees of a modified Gauss-Newton method. In that purpose, [17] considers minimizing
the norm and not the squared norm of non-linear residuals. The generalization of this method to
compositional problems with generic Lipschitz-continuous outer cost on top of the non-linear map-
pings was studied as the prox-linear algorithm [10]. [17] points out that by considering minimizing
the norm instead of the squared norms of the residuals, the resulting problem enjoys a better con-
dition number. However, [17] does not take into account the cost of the line-search which consists
of solving a one dimensional problem by a trust-region method whose computational complexity is
unclear. Similar issues appear when considering the prox-linear algorithm which require an inner
convex solver to compute each iteration, without taking into account the potential additional burden
of a line-search. In comparison, the implementation of a Levenberg-Marquardt method or a regular-
ized generalized Gauss-Newton method (depending on whether the costs are quadratic or not) can
be implemented efficiently in some applications such as nonlinear control [23]. Finally, recently, [9]
presented sufficient conditions for local convergence of generalized Gauss-Newton methods. Our
work differs by considering the additional Assumption 3 to provide global convergence rates.
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Appendix

The Appendix is structured as follows.
1. Appendix A present applications whose problem can be formulated as in (1)
2. Appendix B present the proof of the main theorem. It is decomposed as follows.

(a) Appendix B.1 presents global convergence results of RGGN algorithms for problems of
the form (1) for a convex outer function h satisfying a generic Łojasiewicz inequality
given that the inner function satisfies condition (3) and suitable smoothness assump-
tions.

(b) Appendix B.2 presents local convergence results of RGGN algorithms for problems of
the form (1) for a convex self-concordant outer function h given that the inner function
satisfies condition (3) and suitable smoothness assumptions.

(c) Appendix B.3 details the proofs of Theorem 1 and Corollary 8 for strongly convex outer
functions h given that the inner function satisfies condition (3) and suitable smoothness
assumptions.

3. Appendix C presents the lemmas used for the convergence analysis.
4. Appendix D presents numerical illustrations of the performance of the RGGN algorithm on

some nonlinear control problems.

Appendix A. Problem formulations

In this section, we present how classical problems such as nonlinear control and deep learning can be
cast as (1). We denote by semi-columns the concatenation of vectors such that for x1, . . . , xn ∈ Rd,
we have (x1; . . . ;xn) ∈ Rnd.

A.1. Nonlinear Control

A discrete time nonlinear control problem with state cost only takes the form

min
u0,...,uτ−1∈Rdu

x0,...,xτ∈Rdx

τ∑
t=1

ht(xt) (8)

subject to xt+1 = φt(xt, ut), for t ∈ {0, . . . , τ − 1}, x0 = x̄0,

where, at time t, xt is the state of the system, ut is the control applied to the system, φt is the
discrete time dynamic, ht is the cost on the state and x̄0 is a fixed initial point. The problem is
entirely characterized by the choice of the control variables and can then be reformulated as

min
w=(u0;...;uτ−1)∈Rτdu

h(g(w)) with g(w) = (x1; . . . ;xτ ) h(x) =

τ∑
t=1

ht(xt)

s.t. xt+1 = φt(xt, ut),

where h encapsulates the total cost on the trajectory x = (x1; . . . ;xτ ) and g is the function that,
at a given set of control variables w = (u0; . . . ;uτ−1), associates the corresponding trajectory
x = (x1; . . . ;xτ ).

Gauss-Newton algorithms for nonlinear control problems have been developed by [14, 25]
which use the dynamical structure of the problem to implement Gauss-Newton updates by dynamic
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programming at a linear computational cost with respect to the horizon τ , namely, the cost of an up-
date is O(τ(dx + du)3). Convergence to stationary points of regularized Gauss-Newton algorithms
for nonlinear control were studied by [22].

A.2. Deep Learning

A feed-forward deep network of τ layers applied to an input x such as an image can be written as

ψ(x,w) = zτ

s.t. zt = φt(zt−1, wt) for t ∈ {1, . . . , τ} w = (w1; . . . ;wτ ) z0 = x,

wherewt are the parameters of the tth layer φt that consist, for example, for a multi-layer perception,
in a nonlinear function composed with an affine function, i.e., φt(zt−1, wt) = a(Wtzt−1 + bt)
where a is the element-wise application of a nonlinear function such as the sigmoid function and
wt = (Wt, bt) consists in a matrix of weights Wt and a set of offsets bt.

Given a dataset of input-output pairs (xi, yi)
n
i=1 and a loss ` measuring the error of predicting ŷ

instead of y as `(ŷ, y), training a deep network consists in minimizing the loss incurred by predicting
the outputs through the deep network, i.e.,

min
w∈Rp

n∑
i=1

`(φ(xi, w), yi).

By defining
g(w) = (φ(x1, w), . . . , φ(xn, w)), h(z) =

∑
i=1

`(zi, yi),

the training of a deep network can be formulated as in (1).
Here the inner mapping g maps vectors of size

∑τ
t=1 pt for pt the dimension of the tth parameter

of the deep network to vectors of size dτn for dτ the dimension of the last layer such as dτ = 1 for
prediction tasks and dτ = k for a classification in k classes. As for nonlinear control problems, the
dynamical structure of the deep network can be exploited to reduce the computational complexity
of an RGGN algorithm from a cubic complexity w.r.t. the depth τ to a linear complexity w.r.t. τ by
implementing the oracle with dynamic programming. However, the complexity may remain cubic
in the number of parameters, the number of samples and the dimension of the layers.

Stochastic variants of Gauss-Newton algorithms have been developed, see, e.g. [5] and refer-
ences therein. Our convergence results may help getting convergence rates for such implementations
of Gauss-Newton methods in an overparameterized regime such that condition (3) is satisfied.

A.3. Nonlinear Least-Square Problems

In numerous applications such as phase retrieval [7, 12, 21] or non-negative matrix factoriza-
tion [13], the problem consists in solving a system of nonlinear equations of the form ri(w) = 0 for
q nonlinear functions ri such as ri(w) = (yi− (x>i w)2)2 for phase retrieval problems. One possible
approach is then to solve a nonlinear least squares problem of the form

min
w∈Rp

‖r(w)‖22 =

q∑
i=1

‖ri(w)‖22

9
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where r(w) = (r1(w); . . . ; rq(w)), which is clearly of the form (1). Here an RGNN method pre-
sented in (2) amounts simply to to a Levenberg-Marquardt method [16] with varying regularizations.
Similar algorithms using trust region methods instead of varying regularizations have been devel-
oped by, e.g., [1].

Appendix B. Convergence Analysis Proofs

For all results, we define the oracle used by a RGGN algorithm (2) for problem (1) as, for w ∈ Rp,
ν > 0,

RGGNν(w) = arg min
v∈Rp

{
q
g(w)
h (`wg (w + v)) +

ν

2
‖v‖22

}
= −(∇g(w)∇2h(g(w))∇g(w)> + ν I)−1∇g(w)∇h(g(w)),

such that the iterates of the RGGN algorithm read

wk+1 = wk + RGGNνk(wk),

where we recall that for a function f we denoted by `xf (y) = f(x) +∇f(x)>(y − x) and qxf (y) =

f(x) +∇f(x)>(y− x) + (y− x)>∇2f(x)(y− x)/2 the linear and quadratic approximations of f
around x.

B.1. Global Convergence for Gradient Dominating Outer Functions

The global convergence result relies on ensuring a sufficient decrease of the objective at each iter-
ation. Namely, for a given iterate w, we need to select ν that may depend on w such that the next
iterate, w + v with v = RGGNν(w) satisfies

f(w + v) ≤ min
v′∈Rp

{
q
g(w)
h (`wg (w + v′)) +

ν

2
‖v′‖22

}
(9)

= q
g(w)
h (`wg (w + v)) +

ν

2
‖v‖22

= f(w)− 1

2
∇f(w)>(∇g(w)∇2h(g(w))∇g(w)> + ν I)−1∇f(w).

Theorem 2 provides such regularization, which, combined with an assumption of gradient domi-
nance on the outer function, gives the total complexity in this case.

Theorem 2 Consider problems of the form (1) for a convex outer function h with Lh-Lipschitz-
continuous gradients, Mh-Lipschitz-continuous Hessians satisfying a gradient dominating property
with parameters µh > 0, r ∈ [1/2, 1), i.e.,

∀x ∈ Rq, ‖∇h(x)‖22 ≥ µrh
(
h(x)− min

y ∈Rq
h(x)

)r
, (10)

and an inner function g `g-Lipschitz-continuous with Lg-Lipschitz-continuous gradients satisfying
that there exists σg > 0, such that

∀w ∈ Rp, σmin(∇g(w)) := inf
λ∈Rq

‖∇g(w)λ‖2
‖λ‖2

≥ σg > 0. (11)

10
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The sufficient decrease condition (9) is satisfied for a regularization

ν(w) =
Lg‖∇h(g(w))‖2

2
γ

(
Lg‖∇h(g(w))‖2

4`2gLh(1 + β)

)
,

where γ(x) = 1 +
√

1 + 1/x and β = Mh`
2
g/(3LgLh) is a dimension independent constant.

If r = 1/2, the number of iterations of the RGGN algorithm (2) to converge to an accuracy ε
for problem (1) given regularizations νk = ν(wk) is at most

k ≤ 4θg
√
δ0γ

(
θg
√
δ0

α

)
+ 2ρh ln

(
δ0
ε

)
,

and, if 1/2 < r < 1, the number of iterations to converge to an accuracy ε is at most

k ≤ 2

2r − 1

ρh
ε2r−1

+
2

1− rθgδ
1−r
0 +

√
2θgα

1

1− 3r/2

(
ε1−3r/2 −

(
α

θg

)1/r−3/2
)
,

with ρh=Lh/µ
2r
h , ρg=`g/σg, θh=Mh/(2µ

3r
h ), θg=Lg/(σ2gµ

r
h), α=4ρ2g(2ρ

2
gθh/(3θg) + ρh), δ0 =

f(w(0))−minv∈Rp f(v) and the case r = 2/3 is to be understood limit-wise.

Remark 3 For Lg = 0, the terms depending uniquely on δ0 vanish since θg = 0 in this case. We
then get the classical rates when minimizing a function h that satisfies (10) with a first-order method.
The rates can be improved by analyzing the local behavior of the algorithm to take advantage of the
quadratic approximations taken on the outer function h.

Proof [Proof of Theorem 2] First, note that if h satisfies (10) and g satisfies (11), then for any w ∈
Rp, we have ‖∇(h ◦ g)(w)‖2 ≥ σgµ

r
h(h(g(w)) −miny∈Rq h(y))r. Hence for w∗ ∈ arg min f(w)

with f = h ◦ g, we get 0 = ‖∇f(w∗)‖2 ≥ σgµrh(h(g(w∗))−miny∈Rq h(y))r ≥ 0, so we have that
minv∈Rp f(v) = miny∈Rq h(y).

We have from Lemma 9 that for any w, v ∈ Rp, denoting a0 = Mh`
3
g/3+LgLh`g,

|(h ◦ g)(w + v)−qg(w+v)h ◦ `wg (w + v)| ≤ Lg‖∇h(g(w))‖2+a0‖v‖2
2

‖v‖22.

Since ‖RGGNν(f)(w)‖2 ≤ `g‖∇h(g(w))‖2/ν, condition (9) is satisfied for ν > 0 s.t. a1 +
a2/ν ≤ ν, where a1 = Lg‖∇h(g(w))‖2 a2 = a0`g‖∇h(g(w))‖2. Therefore, denoting γ(x) =
1 +

√
1 + 1/x, condition (9) is satisfied for any

ν ≥ ν(w) =
a1+

√
a21+4a2
2

=
Lg‖∇h(g(w))‖2

2
γ

(
L2
g‖∇h(g(w))‖2

4a0`g

)
.

We have then for v = RGGNν(w)(f)(w), G = ∇g(w), H = ∇2h(g(w)), since condition (9) is
satisfied,

f(w + v)− f(w) ≤ −1

2
∇h(g(w))>G>(GHG> + ν(w) I)−1G∇h(g(w))

= −1

2
∇h(g(w))>(H + ν(w)(G>G)−1)−1∇h(g(w))

≤ −1

2

σ2g
σ2gLh + ν(w)

‖∇h(g(w))‖22 ≤ −
b1x

2

√
b2x2 + b3x+ b4x+ b5

, (12)

11
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where x = ‖∇h(g(w))‖2, b1 = σ2g , b2 = L2
g, b3 = 4a0`g, b4 = Lg, b5 = 2σ2gLh.

The function f1 : x → b1x
2/(
√
b2x2 + b3x + b4x + b5) is increasing for x ≥ 0. Hence,

denoting δ = h(g(w))−miny∈Rq h(y) = f(w)−minv∈Rp f(v), we have f1(x) ≥ f1((µhδ)
r) by

assumption (10). Denoting δk = f(wk)−minv∈Rp f(v) for the kth iteration of the ILQR algorithm,
we then have f ′2(δk)(δk+1 − δk) ≤ −1, with

f ′2(δ) =
1

f1((µhδ)r)
=

2ρh
δ2r

+
θg
δr

+
θg
√
δ2r + αδr/θg
δ2r

=
2ρh
δ2r

+
θgγ(θgδ

r/α)

δr
,

with ρh=Lh/µ
2r
h , ρg=`g/σg, θh=Mh/(2µ

3r
h ), θg=Lg/(σ2gµ

r
h), α=4ρ2g(2ρ

2
gθh/(3θg)+ρh).

Since f2 is concave on R+, we deduce that f2(δk+1) − f2(δk) ≤ −1 and so f2(δk) ≤ −k +
f2(δ0). Note that f2 is strictly decreasing, so we get that, for the algorithm to reach an accuracy ε,
we need at most k ≤ f2(δ0)− f2(ε) iterations.

If r = 1/2, one can verify that δ → a ln(2a
√
δγ(
√
δ/a) + a2) + 2

√
δγ(
√
δ/a) is an antideriva-

tive of δ → γ(
√
δ/a)/

√
δ for any a > 0. Hence, for r = 1/2, the number of iterations to converge

to an accuracy ε is at most

k ≤ 2ρh ln

(
δ0
ε

)
+2θg

(√
δ0γ

(
θg
√
δ0

α

)
−√εγ

(
θg
√
ε

α

))
+α ln

(
2θg
√
δ0γ(θg

√
δ0/α)+α

2θg
√
εγ(θg

√
ε/α)+α

)
≤ 2ρh ln

(
δ0
ε

)
+ 2θg

√
δ0γ

(
θg
√
δ0

α

)
+ α ln

(
1+2

θg
√
δ0

α
γ

(
θg
√
δ0

α

))
.

By using that ln(1 + x) ≤ x for x > −1, we get the claimed bound in this case.
If 1/2 < r < 1, by integrating f2, the number of iterations to converge to an accuracy ε is at

most

k ≤ 2ρh
2r − 1

(
1

ε2r−1
− 1

δ2r−10

)
+

θg
(1− r)

(
δ1−r0 − ε1−r

)
+

∫ δ0

ε

θg
√
x2r + αxr/θg
x2r

dx.

The bound follows in this case by using that, for 1/2 < r < 1, and a > 0,∫ δ0

ε

√
x2r + axr

x2r
dx ≤

∫ a1/r

ε

√
2a

x3r/2
dx+

∫ δ0

a1/r

1

xr
dx.

B.2. Local Convergence under Self-Concordance Conditions

As we analyze the RGGN algorithm locally as an approximate Newton method on the outer func-
tion, we use the notations and assumptions used to analyze a Newton method. Namely, we assume
the outer function h strictly convex and we define the norm induced by the Hessian of h at a point
x ∈ Rq and its dual norm as, respectively, for y ∈ Rq,

‖y‖x =
√
y>∇2h(x)y, ‖y‖∗x =

√
y>∇2h(x)−1y.

12
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For a matrix A ∈ Rq×p, we denote ‖A‖x = ‖∇2h(x)1/2A‖2 the norm induced by the local geom-
etry of h w.r.t. the Euclidean norm. Finally we denote the Newton decrement of the cost function,
as, for x ∈ Rp,

λh(x) =
√
∇h(x)>∇2h(x)−1∇h(x).

To analyze the local convergence of the RGGN algorithm we consider the outer function to be self-
concordant [18, Section 5]. In addition, we consider smoothness properties of the inner function
g with respect to the geometry induced by the Hessian of the outer function h as presented in the
assumptions below.

Assumption 4 We consider that the outer function h is strictly convex and that the following con-
stants are finite

` = sup
w,v∈Rp

v 6=0

‖g(w + v)− g(w)‖g(w)
‖v‖2

, L = sup
w,v∈Rp

v 6=0

‖∇g(w + v)> −∇g(w)>‖g(w)
‖v‖2

ϑh = sup
x,y1,y2,y3∈Rq

y1 6=0,y2 6=0,y3 6=0

|∇3h(x)[y1, y2, y3]|
2‖y1‖x‖y2‖x‖y3‖x

, σ = inf
w∈Rp,µ∈Rq

µ6=0

‖∇g(w)µ‖2
‖µ‖∗g(w)

.

In consequence, h is ϑh-self concordant [18, Definition 5.1.1, Lemma 5.1.2] and we have that
σ ≤ σmin(∇g(w)∇2h(g(w))1/2), σmax(∇g(w)∇2h(g(w))1/2) ≤ `, for any w ∈ Rp.

Assumption 4 is satisfied if the outer function h is µh-strongly convex with Lh-Lipschitz continuous
gradients,Mh-Lipschitz continuous Hessians and the outer function is `g-Lipschitz continuous, with
Lg-Lipschitz continuous gradients and satisfies that σmin(∇g(w)) ≥ σg for allw ∈ Rp. In that case,
we have

` ≤
√
Lh`g, L ≤

√
LhLg, 2ϑh ≤Mh/µ

3/2
h , σ ≥ √µhσg. (13)

Equipped with a stepsize proportional to the Newton decrement, we can show a local quadratic
convergence rate of the RGGN algorithm given Assumption 4.

Theorem 5 Given Assumption 4, consider the RGGN algorithm (2) for problem (1) with regular-
izations of the form νk = ν̄λh(g(wk)) for some ν̄ ≥ 0. For k ≥ 0 such that

λh(g(wk)) < λ =
1

max{4ϑh + 3ϑg + 2ν̄/σ2, 2%ϑh}
, (14)

where % = `/σ and ϑg = L/σ2, we have λh(g(wk+1)) ≤ λ−1λh(g(wk))
2, and the RGGN algo-

rithm converges quadratically to the minimum value of problem (1).

Remark 6 If h is a quadratic, such that the algorithm reduces to a regularized Gauss-Newton
algorithm, a.k.a. Levenberg-Marquardt method, and ϑh = 0, the radius of quadratic convergence
reduces to λ = 1/(3ϑg + 2ν̄). If in addition, no regularization is in effect such that the algorithm
reduces simply to a Gauss-Newton algorithm, the radius of convergence reduces to λ = 1/3ϑg,
which can be expressed as 1/(3θg

√
ρh) if the total cost is µh strongly convex with θg, ρh defined as

in Theorem 2 and σ, L expressed using Eq. (13). So up to 3
√
ρh, the parameter 1/θg acts again as

a radius of fast convergence as in Theorem 2.

13
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Remark 7 For better readability, we simplified the expression of the radius of convergence. A
closer look at the proof shows that a positive regularization may lead to a larger radius of conver-
gence than no regularization.

Proof [Proof of Theorem 5] Let w ∈ Rp G=∇g(w), H=∇2h(g(w)), v= RGGNν(f)(w) with
ν = ν̄λh(g(w)). Assume that

λh(g(w)) ≤ 1/max{
√

2ϑhϑgc1, 2ϑh%c2, 2ϑhc2},

where c1= max{1−ν̄/(√2ϑhL`), 0}, c2= max{1−ν̄/(2`2ϑh), 0}, %=`/σ, ϑg=L/σ2. We have

λh(g(w+v))≤‖∇h(g(w+v))−∇h(g(w)+G>v)‖∗g(w+v)︸ ︷︷ ︸
A

+ ‖∇h(g(w)+G>v)‖∗g(w+v)︸ ︷︷ ︸
B

. (15)

Bounding A in (15). By definition of ` in Assumption 4 and Lemma 12, we have

‖g(w + v)− g(w)‖g(w) ≤ `‖v‖2, ‖v‖2 ≤
`λh(g(w))

`σ + ν̄λh(g(w))
. (16)

One easily verifies that x/(1 + ax) ≤ c if 0 ≤ x ≤ c/max{1 − ca, 0} for any a, c > 0. So for
λh(g(w))) ≤ 1/(2ϑh%c2), we have ‖g(w + v) − g(w)‖g(w) ≤ 1/(2ϑh). Hence, using that h is
ϑh-self-concordant, [18, Theorem 5.1.7] applies and by using the definition of L in Assumption 4,
we have

‖g(w+v)−g(w)−G>v‖g(w+v) ≤
1

1−ϑh‖g(w+v)−g(w)‖g(w)
‖g(w+v)−g(w)−G>v‖g(w)

≤ 2

∥∥∥∥∫ 1

0
∇g(w+tv)>vdt−∇g(w)>v

∥∥∥∥
g(w)

= L‖v‖22.

Using (16), for λh(g(w)) ≤ 1/(
√

2ϑhϑgc1), we get ‖g(w+v)−g(w)−G>v‖g(w+v)≤1/(2ϑh).
Since the total cost h is ϑh-self-concordant, we can then use Lemma 13 to obtain

A ≤ 1

1− ϑh‖g(w + v)− g(w)−G>v‖g(w+v)
‖g(w + v)− g(w)−G>v‖g(w+v)

≤ 2L`2λh(g(w))2

(`σ + ν̄λh(g(w)))2
. (17)

Bounding B in (15). Recall that for λh(g(w))) ≤ 1/(2ϑh%c2), we have ‖g(w+v)−g(w)‖g(w) ≤
1/(2ϑh). Since h is ϑh-self-concordant, we have then [18, Theorem 5.1.7],

B ≤ 1

1−ϑh‖g(w+v)−g(w)‖g(w)
‖∇h(g(w)+G>v)‖∗g(w) ≤ 2‖∇h(g(w)+G>v)‖∗g(w). (18)

Denote ν = ν̄λh(g(w)) and define n = −(H + ν(G>G)−1)−1∇h(g(w)). Using that

v = −G(G>G)−1(H + ν(G>G)−1)−1∇h(g(w)),

14
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and denoting x = g(w), we have then

‖∇h(g(w) +G>v)‖∗g(w) = ‖∇h(x+ n)−∇h(x)− (H + ν(G>G)−1)n‖∗x
≤ ‖∇h(x+ n)−∇h(x)−Hn‖∗x + ν‖(G>G)−1n‖∗x. (19)

The first term can be bounded as in the proof of local convergence of a Newton method [18, Theorem
5.2.2]. Namely, we have

‖∇h(x+ n)−∇h(x)−Hn‖∗x = ‖
∫ 1

0
(∇2h(x+ tn)−∇2h(x))ndt‖∗x.

Since σmax(∇g(w)∇2h(g(w))1/2) ≤ `, we have

‖n‖x = ‖(I +νH−1/2(G>G)−1H−1/2)−1H−1/2∇h(g(w))‖2 ≤
λh(g(w))

1 + ν̄`−2λh(g(w))
.

So if λh(g(w)) ≤ 1/(2ϑhc2), we get ‖n‖x ≤ 1/(2ϑh) and, since h is self-concordant, by [18,
Corollary 5.1.5], we have, denoting J =

∫ 1
0 (∇2h(x+ tn)−∇2h(x))dt,

(−‖n‖xϑh + ‖n‖2xϑ2h/3)∇2h(x) � J � ‖n‖xϑh
1− ‖n‖xϑh

∇2h(x).

Moreover, since ‖n‖x < 1/(2ϑh), we have ‖n‖xϑh − ‖n‖2xϑ2h/3 ≤
‖n‖xϑh

1−‖n‖xϑh . Hence we get

‖∇h(x+ n)−∇h(x)−Hn‖∗x ≤
‖n‖2xϑh

1− ‖n‖xϑh
≤ 2λh(g(w))2ϑh

(1 + ν̄`−2λh(g(w)))2
. (20)

On the other hand, since σ ≤ σmin(∇g(w)∇2h(g(w))1/2), we have

‖(G>G)−1n‖∗g(w) = ‖(H1/2G>GH1/2 + ν I)−1H−1/2∇h(g(w))‖2 ≤
λh(g(w))

σ2 + ν̄λh(g(w))
. (21)

So combining (21) and (20) into (19) and then (18) we get

B ≤ 2

(
2ϑh

(1 + ν̄`−2λh(g(w)))2
+

ν̄

σ2 + ν̄λh(g(w))

)
λh(g(w))2. (22)

Local quadratic convergence rate. So combining (17) and (22) into (15), we get, as long as
λh(g(w)) ≤ 1/max{

√
2ϑhϑgc1, 2ϑh%c2, 2ϑhc2},

λh(g(w+v)) ≤
(

2L`2

(`σ+ν̄λh(g(w)))2
+

4ϑh
(1+ν̄`−2λh(g(w)))2

+
2ν̄

σ2+ν̄λh(g(w))

)
λh(g(w))2.

Note that c1, c2 ≤ 1 and that 2ϑg + 4ϑh + 2ν̄/σ2 ≥ max{2ϑh,
√

2ϑhϑg}, using the arithmetic-
geometric mean inequality. Hence, for

λh(g(w)) < λ = 1/max{2ϑg + 4ϑh + 2ν̄/σ2, 2ϑh%},

we get λh(g(w + v)) ≤ λ̄−1λh(g(w))2 < λh(g(w)), that is, we reach the region of quadratic
convergence for g(w).

15
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B.3. Total Complexity for Strongly Convex Outer Functions

If the inner function and the outer function of problem (1) satisfy the smoothness assumptions of
Theorem 2 and condition (3), then strong convexity of the outer function ensures both a gradient
dominating property as in (10) and self-concordance assumptions as presented in Assumption 4.
We get then both global convergence and local quadratic convergence as stated in Theorem 1 whose
statement and proof are presented below.

Theorem 1 Consider problems of the form (1) for an outer function h µh-strongly convex with
Lh-Lipschitz continuous gradients, Mh-Lipschitz-continuous Hessians and an inner function g `g-
Lipschitz-continuous with Lg-Lipschitz-continuous gradients satisfying (3).

The number of iterations of an RGGN algorithm (2), with regularizations

νk =

(
1 +

α

2(1 + θg‖∇h(g(wk))‖2/(
√
µhρg))

)
Lg‖∇h(g(wk))‖2, (6)

needed to reach an accuracy ε is at most

k(δ0, ε) := 4θg

(√
δ0 −

√
ε
)

+ 2ρh ln

(
δ0
ε

)
+ 2α ln

(
θg
√
δ0 + ρg

θg
√
ε+ ρg

)
, (7)

where ρh = Lh/µh, ρg = `g/σg, θg = Lg/(σ
2
g
√
µh), θh = Mh/(2µ

3/2
h ), α = 4ρ2gρh(β + 1),

β = Mh`
2
g/(3LgLh) and δ0 = f(w(0))−minw∈Rp f(w).

If the desired target accuracy ε is smaller than a gap δ = 1/(32ρh(θh(1 +
√
ρhρ

3
g/3) +√

ρhθg(1 + ρgρh))2) which determines a quadratic convergence phase, the number of iterations
of an RGGN algorithm, with regularization νk defined above, needed to reach the accuracy ε is at
most k(δ0, δ) + ln ln(ε−1).

Proof By using the strong convexity of the costs h, we can refine the choice of the regulariza-
tion to ensure (9). The validity of the proposed regularization to ensure condition (9) is shown in
Lemma 10. With the proposed regularization, as shown in Lemma 11, following the same reasoning
as in the proof of Theorem 2, we have that the number of iterations of the RGGN algorithm needed
to reach an accuracy ε is bounded by

k ≤ 2ρh ln

(
δ0
ε

)
+ 4θg

(√
δ0 −

√
ε
)

+ 2α ln

(
θg
√
δ0 + ρg

θg
√
ε+ ρg

)
, (23)

with ρh, ρg, θh, θg, α defined as in the claim.
For the local convergence, the constants in Theorem 5 can be expressed in terms of the constants

in Theorem 2 as σ =
√
µhσg, ϑh = θh, ϑg =

√
ρhθg, % =

√
ρhρg. From the proof of Theorem 5, if

λh(g(wk)) ≤ 1/max{
√

2ϑhϑg, 2ϑh%, 2ϑh}, then

λh(g(wk+1)) ≤
(

2ϑg + 4ϑh +
2νk

σ2λh(g(wk))

)
λh(g(wk))

2,

where νk/λh(g(wk)) ≤
√
Lh(Lg + 2`g(Mh`

2
g/3+LgLh)/(σgµh)). Define then

λ =
1

4(θh(1 +
√
ρhρ3g/3) +

√
ρhθg(1 + ρgρh))

.

16
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We have that λ ≤ 1/max{
√

2ϑhϑg, 2ϑh%, 2ϑh}. So, if λh(g(wk)) ≤ λ, quadratic convergence is
ensured.

It remains to link the objective gap to the Newton decrement. By considering a gradient step with
step-size 1/Lh, we have ‖∇h(x)‖2 ≤ 2Lh(h(x)−h∗) for any x, hence λh(x) ≤

√
2ρh(h(x)− h∗).

So, the number of iterations to reach quadratic convergence is bounded by the number of iterations
to get an accuracy δ = λ2/(2ρh). Once quadratic convergence is reached the remaining number of
iterations is of the order of O(ln ln ε−1).

The proof of Theorem 1 reveals that as long as νk is chosen to ensure the sufficient decrease
condition (9) while being proportional to the norm of the gradient of the outer function, the results
still hold. Hence the line-search procedure presented in Algo. 1 is a practical implementation of the
RGGN algorithm that keeps its convergence behavior as stated in Corollary 8.

Algorithm 1 Regularized Generalized Gauss-Newton Algorithm with Line-Search
Inputs: Initial point w0, initial scaled regularization ν̄−1 > 0, twice differentiable outer function h,
differentiable inner function g
for k = 0, . . . do

Set ν̄k = ν̄k−1, νk = ν̄k‖∇h(g(wk))‖2
Compute wk+1 = wk − (∇g(wk)∇2h(g(wk))∇g(wk)

> + νk I)−1∇g(wk)∇h(g(wk))
while f (wk+1) > f(wk)− 1

2∇f(wk)
>(∇g(wk)∇2h(g(wk))∇g(wk)

> + νk I)−1∇f(wk) do
Set ν̄k ← 2ν̄k, νk ← ν̄k‖∇h(g(wk))‖2
Set wk+1 ← wk − (∇g(wk)∇2h(g(wk))∇g(wk)

> + νk I)−1∇g(wk)∇h(g(wk))
end

end

Corollary 8 Consider the assumptions and notations of Theorem 1 on problem (1) and Algo. 1
with an initial scaled regularization guess ν̄−1 ≤

(
1 + α/(2 + 2θg

√
δ0/ρg)

)
Lg. The total number

of calls to oracles of the form w, ν → −(∇g(w)∇2h(g(w))∇g(w)> + ν I)−1∇g(w)∇h(g(w)) of
Algo. 1 to reach an accuracy ε ≤ δ′ is at most 2k(δ0, δ

′)+ln ln(ε−1)+dlog2 ((1 + α/2)Lg/ν̄−1)e ,
where k(δ0, δ

′) is defined as in Theorem 1 and δ′ = 1/(32ρh(θh(1 + 2
√
ρhρ

3
g/3) +

√
ρhθg(1 +

2ρgρh))2) is a gap of quadratic convergence for Algo. 1.

Proof Define for w ∈ Rp,

ν̄(w) =

(
1 +

α

2(1 + θg
√
f(w)−minv∈Rp f(v)/ρg))

)
Lg

Since h is strongly convex, we have that ‖∇h(g(w))‖2 ≥ √µh(h(g(w)) − miny∈Rq h(y)) =√
µh(f(w) − minv∈Rq f(v)), where we recall that miny∈Rq h(y) = minv∈Rq f(v) as shown in

Theorem 2. Hence we have that ν̄(w)‖∇h(g(w))‖2 ≥ ν(w) for ν(w) defined in Lemma 10. There-
fore by Lemma 10, the line-search procedure of Algo. 1 at the kth iteration necessarily terminates
with a scaled regularization ν̄k ≤ 2ν̄(wk) since we chose ν̄−1 ≤ ν̄(w0) and since ν̄(wk) necessarily
increases over the iterations as f(wk) decreases when the decrease condition (9) is satisfied.

Moreover, since ν̄(w) is upper bounded by (1 + α/2)Lg the total number of calls to oracles
made by the line-search inner loop to satisfy the decrease condition after k iterations is at most

k +

⌈
log2

(
(1 + α/2)Lg

ν̄−1

)⌉
.
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Since the line-search ensures the decrease condition (9), we have, as in Lemma 11 that for
νk = ν̄k‖∇h(g(wk))‖2,

f(wk+1)− f(wk) ≤ −
1

2

σ2g
σ2gLh + νk

‖∇h(g(w))‖22

≤ −1

2

σ2g
σ2gLh + 2ν̄(wk)‖∇h(g(w))‖2

‖∇h(g(w))‖22

≤ −1

4

σ2g
σ2gLh + ν̄(wk)‖∇h(g(w))‖2

‖∇h(g(w))‖22.

The rest of the proof of Lemma 11 follows and we get that the number of iterations of Algo. 1 to
reach an accuracy ε is at most 2k(δ0, ε) for k(δ0, ε) defined as in Theorem 1.

For the quadratic convergence rate, we have, with the notations of the proof of Theorem 1, that
νk/λh(g(wk)) ≤ 2ν̄(wk)‖∇h(g(wk))‖22/λh(g(wk)) ≤ 2

√
Lh(Lg+2`g(Mh`

2
g/3+LgLh)/(σgµh)).

The rest of the proof follows with a slightly modified quadratic convergence gap.

Appendix C. Helper Lemmas

C.1. Global Convergence Analysis Lemmas

Lemma 9 states that a linear quadratic approximation of the compositional objective in (1) ap-
proximates the objective up to a cubic error. Recall that for a function f we denote by `xf (y) =

f(x) + ∇f(x)>(y − x) and qxf (y) = f(x) + ∇f(x)>(y − x) + (y − x)>∇2f(x)(y − x)/2 the
linear and quadratic approximations of f around x.

Lemma 9 For h : Rq → R with Lh-Lipschitz continuous gradients and Mh-Lipschitz continuous
Hessians, and g : Rp → Rq `g-Lipschitz continuous with Lg-Lipschitz continuous gradients, we
have for any w, v ∈ Rp,

|(h ◦ g)(w + v)−qg(w)h (`wg (w + v))|≤
Lg‖∇h(g(w))‖2+(Mh`

3
g/3+LgLh`g)‖v‖2

2
‖v‖22.

Proof In the proof, for a function f , we denote by ¯̀x
f (y) = ∇f(x)>y and q̄xf (y) = ∇f(x)>y +

y>∇2f(x)y/2 the linear and quadratic expansions of f around x such that the linear quadratic
approximation of the composite objective f = h◦g around w is given as f(w+v) ≈ qg(w)h (`wg (w+

v)) = f(w) + q̄
g(w)
h (¯̀w

g (v)). We have for any w, v ∈ Rp,

|h(g(w+v))−h(g(w))−q̄g(w)h (¯̀w
g (v))| ≤ |h(g(w+v))−h(g(w))−q̄g(w)h (g(w+v)−g(w))|

+ |q̄g(w)h (g(w+v)−g(w))−q̄g(w)h (¯̀w
g (v))|.

On one hand, we have, by Taylor-Lagrange inequality,

|h(g(w+v))−h(g(w))−q̄g(w)h (g(w+v)−g(w))| ≤ Mh

6
‖g(w + v)−g(w)‖32 ≤

Mh`
3
g

6
‖v‖32.
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On the other hand, we have,

|q̄g(w)h (g(w+v)−g(w))−q̄g(w)h (¯̀w
g (v))| =

∣∣∣(g(w+v)−g(w)−∇g(w)>v)>∇h(g(w))

+
1

2
(g(w+v)−g(w)−∇g(w)>v)>∇2h(g(w))(g(w+v)−g(w)+∇g(w)>v)

∣∣∣
≤ Lg‖∇h(g(w))‖2

2
‖v‖22 +

LhLg`g
2
‖v‖32.

Lemma 10 refines the regularization choice of Theorem 2 by exploiting an additional assumption of
strong convexity of the outer function.

Lemma 10 For h : Rq → R µh-strongly convex, Lh-smooth with Mh-smooth Hessians, and
g : Rp → Rq `g-Lipschitz continuous and Lg-smooth such that σmin(∇g(w)) ≥ σg > 0 for all
w ∈ Rp, condition (9) is satisfied by choosing a regularization

ν ≥ ν(w) =

(
1 +

α

2(1 + θg‖∇h(g(w))‖2/(√µhρg))

)
Lg‖∇h(g(w))‖2.

where ρh = Lh/µh, ρg = `g/σg, θg = Lg/(σ
2
g
√
µh), θh = Mh/(2µ

3/2
h ), α = 4ρ2g(2ρ

2
gθh/(3θg) +

ρh).

Proof Let w ∈ Rp, G = ∇g(w), H = ∇2h(g(w)). We have

RGGNν(f)(w) = −G(G>G)−1(H + ν(G>G)−1)−1∇h(g(w))

= −G(G>G)−1/2((G>G)1/2H(G>G)1/2 + ν I)−1(G>G)1/2∇h(g(w)).

We have then

‖RGGNν(f)(w)‖2/‖∇h(g(w))‖2 ≤ min{`2g/(µhσg`2g + νσg), `g/(ν + µhσ
2
g)}

≤ 2`g/(ν(1 + σg/`g) + µhσg(σg + `g))

≤ 2`g/(ν + µhσg`g),

where we used that min{a, b} ≤ 2/(1/a + 1/b). Hence condition (5) is satisfied if ν satisfies
a1 + a2/(a3 + ν) ≤ ν with a1 = Lg‖∇h(g(w))‖2, a2 = 2a0`g‖∇h(g(w))‖2, a3 = σg`gµh,
a0 = Mh`

3
g/3+LgLh`g. Hence condition (5) is satisfied for ν ≥ ν0 = (a1 − a3 + (a1 +

a3)
√

1 + 4a2(a1 + a3)−2)/2. The result follows using that since
√

1 + 2x ≤ 1 + x, we have
ν0 ≤ a1 + a2/(a1 + a3). Hence it suffices to select a regularization larger than

ν(w) = Lg‖∇h(g(w))‖2 +
2`2g(Mh`

2
g/3+LgLh)‖∇h(g(w))‖2

Lg‖∇h(g(w))‖2 + σg`gµh

=

(
1 +

2ρg(2θhρ
2
g/(3θg) + ρh)

1 + θg‖∇h(g(w))‖2/(√µhρg)

)
Lg‖∇h(g(w))‖2.

Lemma 11 details the computations of the complexity bounds of the RGGN algorithm in the
case of a strongly convex outer function used in Eq. (23) before taking into account the local
quadratic convergence.
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Lemma 11 Consider problems of the form (1) for an outer function h µh-strongly convex with
Lh-Lipschitz continuous gradients and Mh-Lipschitz continuous Hessians, and g : Rp → Rq `g-
Lipschitz continuous withLg-Lipschitz continuous gradients satisfying that σmin(∇g(w)) ≥ σg > 0
for all w ∈ Rp, The number of iterations of an RGGN algorithm (2), with regularizations

νk =

(
1 +

α

2(1 + θg‖∇h(g(wk))‖2/(
√
µhρg))

)
Lg‖∇h(g(wk))‖2,

needed to reach an accuracy ε is at most

k ≤ 2ρh ln

(
δ0
ε

)
+ 4θg

(√
δ0 −

√
ε
)

+ 2α ln

(
θg
√
δ0 + ρg

θg
√
ε+ ρg

)
,

where ρh = Lh/µh, ρg = `g/σg, θg = Lg/(σ
2
g
√
µh), θh = Mh/(2µ

3/2
h ), α = 4ρ2g(2ρ

2
gθh/(3θg) +

ρh).

Proof Let w ∈ Rp and v = RGGNν(w)(f)(w) for

ν(w) =

(
1 +

α

2(1 + θg‖∇h(g(w))‖2/(√µhρg))

)
Lg‖∇h(g(w))‖2.

As shown in Lemma 10, the chosen regularization ensures the sufficient decrease (9). As in Eq. (12),
in the proof of Theorem 2, we get that

f(w + v)− f(w) ≤ −1

2

σ2g
σ2gLh + ν(w)

‖∇h(g(w))‖22 = − b1x
3 + b2x

2

b3x2 + b4x+ 1
,

where x = ‖∇h(g(w))‖2, b1 = Lg/(2`gµhLhσg), b2 = 1/(2Lh), b3 = L2
g/(σ

3
g`gµhLh), b4 =

Lg/(σg`gµh)+Lg/(σ
2
gLh)+2a0/(σ

3
gµhLh). The function f1(x) = (b1x

3+b2x
2)/(b3x

2+b4x+1)
is increasing and since h is strongly convex, we have that ‖∇h(g(w))‖22 ≥ µh(h(g(w))−h∗) = µhδ
for δ = f(w)− f∗. Hence, as in the proof of Theorem 2, we get that the total number of iterations
to reach an accuracy ε is at most k ≤ f2(δ0)− f2(ε) where

f ′2(δ) =
1

f1(
√
µhδ)

=
1 + c1δ

1/2 + c2δ

c3δ + c4δ3/2
,

where c1 = θg(ρ
−1
g +2ρg+ρ−1h )+4ρ3gθh/(3ρh), c2 = θ2g/(ρgρh), c3 = 1/(2ρh), c4 = θg/(2ρgρh).

By standard integration, we have that an antiderivative of f ′2 is

f2(x) =
ln(δ)

c3
+

2c2
c4

√
δ − 2

(c2c
2
3 − c4c1c3 + c24)

c3c24
ln(c4

√
δ + c3)

= 2ρh ln(δ) + 4θg
√
δ + 8ρ2g(ρh + 2ρ2gθh/(3θg)) ln(θg

√
δ/(2ρhρg) + 1/(2ρh)).

The result follows.
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C.2. Local Convergence Analysis Lemmas

Lemma 12 provides a bound on the oracle returned by an RGGN algorithm in terms of the constants
introduced in Assumption 4.

Lemma 12 Given Assumption 4 on problem (1), we have for any w ∈ Rp, ν ≥ 0,

‖RGGNν(f)(w)‖2 ≤
`

`σ + ν
‖∇h(g(w))‖∗g(w).

Proof For w ∈ Rp, ν ≥ 0, denoting∇2h(g(w)) = H ,∇g(w) = G, we have

RGGNν(f)(w) = −GH1/2(H1/2G>GH1/2 + ν I)−1H−1/2∇h(g(w)).

Recall that by definition of σ and `, we have σ ≤ σmin(GH1/2), σmax(GH1/2) ≤ `. By considering
the singular value decomposition of GH1/2, we then have

‖GH1/2(H1/2G>GH1/2 + ν I)−1‖2 ≤ max
x∈[σ,`]

x

ν + x2
=


σ

σ2+ν
if ν ≤ σ2

1
2
√
ν

if σ2 ≤ ν ≤ `2
`

`2+ν
if ν ≥ `2

.

By analyzing each case, we get the claimed inequality.

Lemma 13 provides a bound on the differences of gradients of a self-concordant function. It
replaces the classical bound we can have for Lipschitz-continuous gradients.

Lemma 13 For a ϑh-self-concordant strictly convex function h [18, Definition 5.1.1] and y, x such
that ‖y − x‖x < 1/ϑh, we have,

‖∇h(y)−∇h(x)‖∗x ≤
1

1− ϑh‖y − x‖x
‖y − x‖x.

Proof Denote J =
∫ 1
0 ∇2h(x + t(y − x))dt and H = ∇2h(x), we have ‖∇h(y) − ∇h(x)‖∗x =

‖J(y − x)‖∗x = ‖H−1/2JH−1/2‖2‖y − x‖x. Now H−1/2JH−1/2 � 0 since h is strictly convex
and by [18, Corollary 5.1.5], we have J � ∇2h(x)/(1− ϑh‖y − x‖x) hence ‖H−1/2JH−1/2‖2 ≤
1/(1− ϑh‖y − x‖x).

Appendix D. Numerical Illustrations

D.1. Convergence comparisons

The empirical performance of the RGGN algorithm compared to a simple gradient descent on sim-
ple nonlinear control problems as in (8) in Fig. 1. The first problem considered in Fig. 1 consists in
swinging up a pendulum to a vertical position in finite time, the second problem consists in control-
ling a simple model of a car to be at predefined positions at given times. The detailed experimental
setting is presented in the next paragraph. Most importantly, the costs consists in quadratic state
costs bounded below by 0, i.e., of the form ht(xt) = (xt − x̂t)>Qt(xt − x̂t) for Qt positive semi
definite and x̂τ a reference state with no costs on the control variables. In Fig. 1, we plot log(ct/c0)
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Figure 1: Convergence of Regularized Generalized Gauss-Newton (RGGN) and Gradient Descent
(GD) on some nonlinear control problems with optimal cost 0.

where ct ≥ 0 denotes the total cost at iteration t computed by means of a gradient descent or a
RGGN algorithm and c0 denotes an initial cost given by initializing the control variables at 0. We
observe that the RGGN algorithms converge to an optimal cost, i.e., ct = 0. Moreover the RGGN
agorithm outperforms a simple gradient descent and appears to exhibit a fast convergence after some
iterations.

D.2. Experimental details

For both experiments, we implemented both algorithms, gradient descent (GD) and RGGN, with a
line-search on either the stepsize for GD or the scaled regularization for RGGN. For both settings
the control variables are initialized at 0.

Swinging up pendulum. The dynamics of the pendulum and the cost associated to swing up the
pendulum are taken from [24, Section 10.2.1] with the constants detailed in [24, Appendix A] except
that for Fig. 1 we consider no regularization on the control variables, i.e., ρ = 0 in the notations of
[24, Section 10.2.1]. We considered an Euler Discretization of the dynamics [24, Section 10.1], an
horizon τ = 100 and a discretization step ∆ = T/τ = 2./100 for T the continuous time horizon.

Simple Model of a Car with Tracking Costs. The dynamics of a simple model of a car are
detailed in [24, Section 10.3.1, Equation (52)] with the constants detailed in [24, Appendix A]. In
Fig. 1, we considered a tracking cost [24, Section 10.3.2. Equation (54)] on a simple track presented
in [24, Figure 13] and we did not add any cost on the control variables, i.e., λ = 0 in the notations
of [24, Section 10.3.2]. We considered a Runge-Kutta discretization method with varying control
inputs [24, Section 10.1], an horizon τ = 50 and a discretization step ∆ = T/τ = 2./50 for T the
continuous time horizon.
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