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Abstract

We explore the usage of the Levenberg-Marquardt (LM) algorithm for regression (non-linear least
squares) and classification (generalized Gauss-Newton methods) tasks in neural networks. We
compare the performance of the LM method with other popular first-order algorithms such as SGD
and Adam[4], as well as other second-order algorithms such as L-BFGS [9], Hessian-Free [10] and
KFAC[11]. We further speed up the LM method by using adaptive momentum, learning rate line
search, and uphill step acceptance.

1. Introduction

First-order methods are easy to use and require moderate computational cost per iteration for
optimizing neural networks. However, their hyper-parameters are cumbersome to tune, and the
convergence rate can decrease as the neural network (NN) size becomes large. Second-order methods
leverage the Hessian matrix (i.e. the curvature of the objective function) and enjoy faster convergence,
robustness, and affine invariance. In a single step, instead of just advancing towards the minimum,
it steps towards the global minimum under the assumption that the function is quadratic and its
second-order expansion is a good approximation. This allows the optimizer to make big steps
in low-curvature scenarios and small steps in high-curvature scenarios. However, computing and
storing the Hessian H = V?2f(z) and its inverse is expensive in computation (time complexity
O(n?)) and memory (space complexity O(n?)). When the number of parameters in a NN becomes
large it is prohibitively expensive to compute the full Hessian inverse. Several approaches, such as
the Gauss-Newton method, the Limited-Memory Broyden—Fletcher—Goldfarb—Shanno (LBFGS)
method, the Hessian-Free method, and the KFAC method [9-11], have been proposed to approximate
curvature information making second-order algorithms more efficient.

In this work, we provide a version of the Levenberg-Marquardt (LM) Algorithm for Neural
Networks which utilizes adaptive momentum, learning rate line search, and uphill step acceptance to
increase convergence as well as performance. We compare the modified LM method to LBFGS, HF,
KFAC to SGD and Adam for training a CNN on the MNIST dataset and an MLP on a noisy Sine
regression task. For more on each method see Appendix A.

2. LM Algorithm for Neural Networks

There have been many updates to the standard Levenberg-Marquardt algorithm. In this section, we
consider some of these extensions and combine the methods to get an updated version of LM.
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2.1. Gauss-Newton Method

Gauss-Newton (GN) method was originally proposed to solve a nonlinear least square problem,

where 7 : R" — R™ denotes the residual r(x) = [r1(z), ..., 7m(x)]T of a n-vector x.
m

min  g(x) = r(@)|3 =Y ri(2)? M
i=0
To optimize the function above, we can take a Newton step, which will do the following update
o = —V2g(z)Vg(z) = —(JTT + Z ri(z)V2r(z)) Ty 2)
where J = 8( 2) is the Jacobian matrix of r(x). However in the Gauss-Newton step, we discard the
second term in the inverse and simply do
vgn = —(JTT) LT, 3)
The Gauss-Newton step doesn’t require second derivatives and always provides a descent direction
when .J has full column rank; because H = 2.J7.J is positive definite.
The Levenberg-Marquardt algorithm is a variant of the Gauss-Newton method which addresses
the indefiniteness of the approximated Hessian by adding a regularization term A
Vgn = —(JTT + AT, 4)
Here )\ defines a trust region where the quadratic approximation is a good fit. It blends linear and

quadratic approximations. When A = 0, the update rule is completely based on the second-order
approximation, when ) is very large, the rule is completely based on the first-order approximation.

2.2. Generalized Gauss-Newton Method

Consider a neural network (NN) with L + 1 layers, at the [-th layer, given the outputs from the
preceding layer 2(~1) as input, () is computed as z() = qb(W(l):v(l*l) + b(l)), where W) and p()
are the weights and bias, ¢ is the nonlinear activation function. ¢ is the output of the NN. Assume
the dimension of the output of the last layer is c. The empirical average loss we want to minimize is:
N
Zfz - Z (yz(g)’yz) (5)
=1
where 6 denotes all the parameters in the NN, 0 € R"™ (n is the number of all the parameters) and
e(9i(0),y;) is a loss function based on the differences between the output §; and the ground truth y;,
(Ui, yi € R) for a given dataset {(x1,y1), (x2,¥y2), ..., (xn,yn)}. The loss € could be Mean Square
Error for the regression task and Cross-Entropy for the classification task.
To derive the generalized Gauss-Newton method, we first examine the Hessian of f;(6) corre-
sponding to a single data point.

0*fi(0) _ 1 3fz( )
= J; H;J; Ji) 4 6
20 * Z Fr ae( i) ©)
where J; = 83” and H; = (f () ) In the Gauss-Newton method, we approximate the Hessian by
ignoring the second term and only keeping J! H;.J; where J; € R®*™ and H; € R°*°. Finally, g afé@

is approximated by H = 4 Z,fil JI'H;J; [15]. When £;(0) = &(9:(0), vi) = 39:(6) —y;||3, which
is the Mean Square Error loss, H; = I, then we have the same formula as stated in the nonlinear
least square problem: H = % Zf\il JLJ;.
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When f;(0) = e(9:(0),y;) is the Cross Entropy loss, if we assume ; € R€ is a vector which
represents the probabilities of each class, and y; € R€ is a one-hot encoding vector with 1 for the
2 £
groundtruth class k. Then H; = %(J;()@ is a matrix in R™*™ with only one non-zero entry at the
position (k, k), therefore the approximated HNcan be further simplified to
1
H = VHiOVHiO)" @)

Finally we add the regularization term as we did in the LM method and get H=H + A\l

2.3. Dampening: Maximum Diagonal

To improve on the Gauss-Newton method, in the LM method we dampen the J7'.J matrix with
a diagonal cut-off. The LM step therefore becomes: dff = —(JT.J + ADTD)='V f(6)T. Where
DT D is a positive-definite matrix representing the relative scaling of the parameters and \ is the
dampening parameter. We define D™ D as the element-wise maximum of the diagonal of all the
previous .JJ7.J and the current one. We initialize DT D = 0.01/. This dampening matrix preserves
rescaling invariance while being more robust at avoiding parameter evaporation [16].

2.4. LM with Adaptive Momentum

By combining the merits of the Levenberg-Marquardt (LM) method and the Conjugate Gradient (CG)
method, one can incorporate an adaptive momentum term into the LM method. And can formulate
training a NN as a constrained optimization problem [1].

We denote the NN parameters 6;, the updates df; at time step t, and H; is the (approxi-
mated) Hessian. Two update 6; and 6;_; are non-interfering or mutually conjugate w.r.t. H when
dH? Hdf;—1 = 0 Our goal is to maximize

Py = db Hydb (®)
without compromising the need for a decrease of the loss function f(€) so we add two constraints
where 6Q); < 0.

' o] H,do; = (5P)?  df (6;) = 6Q; ©)
The constrained optimization problem can be solved analytically by introducing Lagrange multipliers
21,22
¢r = Dy + 21(0Q¢ — df (01)) + 22[(6P)* — db] H,db] (10)
To maximize the ¢, we get the following:
z1 —1 1
doy = ———H, "V f(0 —db;_ 11
t 92y 't f(t)+2z2 t—1 11

Define the following terms:

Icc =VfO)TH'Vf6) Igr=Vf:)'do; Ipp=dol H;db; . (12)
Then z1, 22 can be evaluated in terms of known quantities
1 Iga(6P)% — (5@02]71/2 L —2290Q+ + IaFp
2 Ipplae — 1%, b Ica

(13)

22

2.5. Learning Rate Line Search

Due to the trust region nature of the LM method, one will have successful iterations as well as failed
ones. A successful iteration is defined as an iteration whose updated weight results in a lower loss
than the previous iteration. In the case of a failed iteration, we perform a line search over the learning
rate (LR) to minimize the loss function. We then update our network using those parameters. The
algorithm is produced in Alg. 2 in the appendix. We do not count the line search as extra iterations
since we are not recalculating the network’s Jacobian or an inverse.
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2.6. Uphill Steps

The LM algorithm requires a rule to accept or reject a proposed step. A natural and safe choice
is to only accept steps that reduce the loss. But this may not be the most efficient acceptance rule.
The Uphill step [16] rule accepts steps such that the algorithm is moving in the general direction of
the previous iteration. Formally 3; = cos(df™¢", d9°'?). This denotes the cosine angle between the
proposed direction d6™¢" and the last accepted step df°?. In words, we want to accept uphill moves
if the angle §3; is acute, increasingly as 3; — 0. Specifically the uphill acceptance rule becomes
(1= B:)bf(0+) < f(6') or more conservatively if (1 — 3;)° f(0/+1) < min(f(07),---, f(6Y)). As
b increases the algorithm will accept uphill steps more freely.

3. Evaluation and Comparison

3.1. Setup

We use a synthetic noisy Sine dataset and MNIST to evaluate the NN. We use the best hyper-
parameters per optimizer. See appendix B for more details.

3.2. Regression Problem

We begin our experiments with a vanilla LM method using the GN approximation of the Hessian
matrix. We train a 2-layer MLP with ELU activations to do a regression of a noisy Sine function.
We then add adaptive momentum, LR line search, and maximum diagonal dampening in LM, and
compared. As we see, in Figure 1 (a), adding these methods to LM greatly improves the convergence.
In Figure 1 (b) compares modified LM to other first and Quasi/Gauss-Newton methods with
tuned hyper-parameters. We see that our modified LM method was able to converge faster and to a
lower loss compared to the rest. First order optimizers as well as KFAC converged to a loss of 0.5
whereas LBFGS and HF methods converged to around 0.25. In comparison, LM with max diagonal
components of the GN matrix, adaptive momentum, and LR line search converged to 0.001.

“} —— LV - Vanilla N — sGD
—— LM - max diag + momentum + Ir linesearch I\ Adam
. I\ LM
—— KFAC

—— HF
— Ibfgs

Figure 1: Comparison of optimizers on Sine regression problem. The X-axis is iterations y-axis is
loss. a) vanilla LM vs updated LM. b) Comparing 1°* and 2"? order optimizers vs modified LM
As second-order methods are slower per iteration compared to first-order methods, we train a NN

till the loss converges using the LM method and allow other optimizers the same time. In Figure 1
LM converges to a lower loss representing a better solution to the regression problem (see Figure 3).

3.3. MNIST Classification

Next, we train a Convolutional Neural Network on the MNIST dataset. In Figure 2 the LM method
optimizes the NN in fewer epochs, converging to a lower loss with higher test and train accuracy
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LM KFAC HF LBFGS Adam SGD

Time 0.9 3 47 56 0.1 0.1
Epochs to reach 90% 4 26 11 17 13 26
Converged Yes Yes No Yes Yes Yes

Accuracy (100 Epochs) | 97.5% 96% 94% 91% 96.5% 96%

Table 1: Comparison of Timing, variance in appendix

compared to the rest of the optimizers. In our experiments, HF optimization tends to be unstable. We
adjust the learning rate as well as increased the number of CG iterations for the HF method but we
often found instabilities with both HF and LBFGS. We found LBFGS would often get stuck at an
accuracy of 1%; we omit these runs from the results.
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Figure 2: CNN on Full MNIST (100 Epochs)

Table 1 is the overall timing and results of the full MNIST experiment on a CNN. We ran each
optimizer and timed them till they reached an accuracy of 90%. We see that the LM method reaches
the best loss followed by Adam. Yet the time it took to run the first-order optimizers was less than
other methods. LM converges to a lower loss and better accuracy than the other optimizers, even if
it is slower. As we also observed from the noisy Sine regression before, the LM method can learn
well from a small amount of data, as shown by the few numbers of iterations it took to reach the
90% accuracy mark. Figure 5 shows the ablation study on LM and demonstrates the effectiveness of
learning rate line search, adaptive momentum, as well as uphill techniques. In Figure 5, we see that
these adjustments significantly improve the stability of the loss and improve accuracy.

4. Conclusion and Future Work

We implement the Levenberg-Marquardt method for neural networks and observe favorable con-
vergence performance on both regression and classification tasks. Furthermore, learning rate line
search, adaptive momentum, and uphill steps are all useful techniques to improve the performance
of the LM method. With this in mind, we found this method to not be scalable due to memory and
computational constraints. We believe that some of the methods explored in this paper can be applied
to very recently proposed, cheap curvature-aware optimizers such as PSGD [5-8].
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Appendix A. Theoretical Background
A.1. Newton Method

Newton’s method is a second-order method which enjoys fast convergence, robustness and affine
invariance. In a single step, instead of just advancing towards the minimum, it steps towards the global
minimum under the assumption that the function is actually quadratic and its second order expansion
is a good approximation. This allows the optimizer to make big steps in low-curvature scenarios
and small steps in high-curvature scenarios. The Newton step vy is calculated by minimizing the
second-order approximation in (14). However, computing and storing the Hessian H = V2 f(z) and
its inverse is expensive in computation (time complexity O(n?)) and memory (space complexity
O(n?)). Several variations are proposed to approximate the Hessian H more efficiently.

f(x +0) = f(z)+ Vf(x)Tv + %UTVQf(x)v (14)

v = —V2f(2) "IV F(x) (15)

A.2. Quasi-Newton Method

Quasi-Newton method uses inverse Hessian estimation to compute each update iteration. The most
popular one is the Broyden—Fletcher—Goldfarb—Shanno (BFGS) update.

T T T

- sy 1 ys ss
Hk+1 (I - yTs)Hk (- yTS) + yTs (16)
s=xp1— 2 Y= Vf(xr1) — VS(rg) (17)

where H,~ ! is the approximation of inverse Hessian at iteration k. Then to further tackle the
memory issue, limited-memory BFGS (L-BFGS) was proposed to avoid storing Hy, and H, L by
evaluating Hj, recursively for m iterations (j = k — 1,..., k — m).

‘ST S'ST

Hl = (- jTy] V(T - 20y 4 2 (18)
y] 3] yj S_] y] Sj

sj = Tjr1 —xj Y = V(i) = VI(z)) (19

A.3. Gauss-Newton Method

Gauss-Newton method was originally proposed to solve the nonlinear least squares problems, where
r: R™ — R™ denotes the residual r(z) = [r1(x), ..., 7 (2)]T of a n-vector .

m

min  g(z) = r(@)|3 =) ri(2)’ 20)

=0

To optimize the function above, we can take a Newton step, which will do the following update

o = —V2g(2) " 'Vyg(z) = —(JTT + Zn )V2ri(z)) "ty (21)
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where J = 83(;) is the Jacobian matrix of (z). However in the Gauss-Newton step, we discard

the second term in the inverse and simply do

vgn = —(JTT) LTy (22)

So the Gauss-Newton step doesn’t require second derivatives and always provides a descent
direction when J has full column rank; because H = 2.J7.J is positive definite.

Levenberg-Marquardt algorithm is a variant of Gauss-Newton method which addresses the
indefiniteness of the approximated Hessian by adding a regularization term A

vgn = —(JTT + AN~y (23)

Here )\ essentially defines a trust region where the quadratic approximation is a good fit. It blends
the linear and quadratic approximations. When A = 0, the update rule is completely based on the
second-order approximation, when X is very large, the rule is completely based on the first-order
approximation.

A.4. Generalized Gauss-Newton Method

Consider a neural network (NN) with L 4+ 1 layers, at the [-th layer, given the outputs from the
preceding layer 2(~1) as input, () is computed as () = ¢(W(l)x(l*1) + b(l)), where W) and p()
are the weight and bias, ¢ is the nonlinear activation function. ¢ is the output of the NN. Assume the
dimension of output of the last layer is c. The empirical average loss we want to minimize is:

N N
£(0) = 5 D2 7(0) = 5 D" (0, ) 24)
i=0 i=1
where 0 denotes all the parameters in the NN, § € R™ (n is the number of all the parameters) and
e(9:(0),y;) is a loss function based on the differences between the output g; and the groudtruth y;,
(Ui, yi € R) for a given dataset {(x1,y1), (z2,y2), ..., (xn,yn)}. The loss e could be Mean Square
Error for the regression task and Cross Entropy for the classification task.
To derive the generalized Gauss-Newton method, we first examine the Hessian of f;(6) corre-
sponding to a single data point.

0% fi(9)
00

L 0f:(0). 9
ggi ))j—(,]i)j (25)

= JIHiJi +

Jj=1

where J; = % and H; = %Q(J;()g). In the Gauss-Newton method, we approximate the Hessian by

ignoring the second term and only keeping JiT H;J; where J; € R*™ and H; € R°*€. Finally, we

: 21 (6) - :
approximate 37— is approximated by[15]

N

1 T
H:N2;5m¢ (26)

When f;(0) = e(3:(0),y:) = 39:(0) — y:||3, which is the Mean Square Error loss, H; = I,
then we have the same formula as stated in the nonlinear least square problem.

1N
H=2=Y J'J 27
N; @7
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When f;(0) = e(9:(0),y;) is the Cross Entropy loss, if we assume ; € R€ is a vector which
represents the probabilities of each class, and y; € R€ is a one-hot encoding vector with 1 for the

groundtruth class k. Then H; = %2(];()@ is a matrix in R™*™ with only one non-zero entry at the
position (k, k), therefore the approximated H can be further simplified to

1 N
H= ; VOV fi(0)" (28)

Finally we add the regularization term as we did in the LM method and get H = H + \I

A.5. Hessian-Free

Hessian-free optimization uses the insights from Newton’s method but comes up with a better way
to minimize the quadratic function. Just as in Newton’s method, given a function f, we find the
second-order Taylor expansion:

fl@+v) = f(z) + V@) v+ o  H(f)v (29)

We then find the minimum of this approximation (the best Ax) using conjugate gradient, take an
iterative step to x = = + v, and continue this iteration until we have convergence.

Algorithm 1 Hessian-Free
Let f be any function f : R™ — R which we wish to minimize.

1. Initialize:
Let i = 0 and z; = xo be some initial guess.

2. Set up quadratic expansion:
At the current x,,, compute the gradient V f (x,,) and Hessian H(f) (x,) , and consider the
following Taylor expansion of f :

flz+v) =~ f(z) + Vi) v+ o H(f)v

3. Conjugate gradient:
Compute z,,4+1 using the Conjugate Gradient algorithm for quadratic functions on the current
Taylor expansion.

4. Iterate:
Repeat steps 2 and 3 until z,, has converged.

Fortunately in the Hessian free algorithm, it is possible to circumvent the full Hessian expansion
in step 2, and instead only requires us to calculate the much cheaper Hessian vector product Hv.

10
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To see this, consider the first component of Hv. The ¢—th row of the Hessian contains partial
derivatives of the form % f where j is the column index. As per normal matrix-vector multipli-
cation, the i—th row of Hwv is the dot product of v and ith row of H. The i—th row of H can be
expressed as the gradient of the derivative of f with respect to x;, yielding [3]:

One can utilize auto-differentiation packages to calculate the exact Hessian vector product as
detailed by [12] The operator is defined

RAFO} = 5 f(x+tv)

=0
so Hv = Ry {Vx(x)} . (To avoid clutter we will usually write R{-} instead of R {-}) We can then
take all the equations of a procedure that calculates a gradient, e.g. the backpropagation procedure,
and we can apply the R,{-} operator to each equation. Because R{-} is a differential operator, it
obeys the usual rules for differential operators, such as:

Ricf(x)} = cR{f(%)}
R{F(x) +9(x)} = R{f (%)} + R{g(x)}
R{UF(x)9(x)} = R{f(x)}9(x) + f(x)R{g(x)}
R{f(9(x))} = f'(9(x)R{g(x)}

R

(9(x)
df (x) } _dR{f(x)}
dt dt

Also note that
Ri{x} =v

These rules allow one to use existing auto-differentiation packages to calculate the vector R{Vy}
which is precisely the vector which we desire Hv.

In practice, HF sees fewer applications than SGD because its updates are much more expensive to
compute, as they involve running linear conjugate gradient (CG) for potentially hundreds of iterations.
Each of these iterations requires a matrix-vector product with the curvature matrix (which are as
expensive to compute as the stochastic gradient on the current mini-batch). Next, HF’s estimate of
the curvature matrix must remain fixed while CG iterates. This means that the method is able to go
through much less data than SGD can in a comparable amount of time, making it less well suited to
stochastic optimizations.

A.6. KFAC

To get the full understand behind the KFAC method one needs to dive into ample theory covered
in the paper. Instead of reproducing this, I will instead provide a sketch for the KFAC method in
the Newton Step, we well as talk about some differences between KFAC and other methods. The
following notes on KFAC are reproduced from [2] for completion.

11
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A.6.1. LINEAR NETWORK

Given a matrix parameter W and a goal of modeling Y as follows
Y =BTWA (30)

We define a prediction error as
r=Y — BTWA. 31)

We minimize the prediction error by minimizing over W in the trace loss

f= %tr(rTr) (32)
To minimize we take the first derivative:
df = tr(rTdr) = tr(rT BLdW A) (33)
By using the trace properties we find the derivative of W
G =dW = —BrA” (34)
Taking the derivative of G’ we have:
dG = —BBTdW AAT 35)
We vectorize both sides and apply the Kronecker-Vector transform rule:
vec(dG) = (AAT @ BB Yvec(dW) (36)
We can then by inspection see
H = (AAT ® BBT) (37)

Since we have extracted the Hessian from an equation that was vectorized we write our update
rule as:
vec(W) — H 'vec(Q) (38)

To calculate this inverse we note that the inverse distributes over Kronecker product and the fact
that vec distributes over Kronecker product we have

vec(W — (BBT)71G(AAT)™h). (39)

Which gives us the Newton update step for the unvectorized form of the problem.

12
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A.6.2. PIECEWISE LINEAR NETWORK

For a piecewise linear neural network, the loss for each example is locally linear, and we can write
our total loss as sum of per-example losses

F=>_1 (40)

where each example 7 is associated with its own versions of A;, B; and r;. And so we have the
per-example derivative of the loss:

df; = —tr(r] BFdw;A)) (41)

Where the toal Hessian is the sum of H; which we can approximate using equasion 1 in the
KFAC paper
H=> (AA]T @ BB )= > (AiA]) > (BiB) 42)
i i

)

Since each example corresponds to a vector we can stack these vectors into a matrix resulting in
H ~ AAT @ BB™. Again, our Hessian inverse can be written as

H '~ (AAT)" 1 (BBT)™! (43)

A.6.3. INTUITION AND DISTINGUISHING FACTORS OF KFAC

The core of the KFAC method is to use an approximation of the Fisher Information matrix which
assumes each of the layers are independent. The independence can be seen by the authors formulation
in which all the weights of a each layer of a NN are broken down into groups by rows and columns
in the Fisher matrix. This allows for the Fisher matrix to be factored into the multiplication of much
smaller matrix multiplications via Kronecker factorization. Such a factorization allows for very
efficient inversion of the Fisher matrix. Online estimation of the matrix is possible using arbitrarily
large subsets of the training data (without increasing the cost of inversion).This assumption, although
a strong, allows for the math to be factored in a computationally efficient way. While the assumption
that the layers of a NN are independent is a strong one, it allows for the math to be factored in a
computationally efficient way.

Another distinguishing factor that sets the KFAC method apart from the rest of the optimization
methods looked at thus far, is that the KFAC method can estimate the curvature matrix from a lot of
data by using an online exponentially-decayed average, as opposed to relatively small-sized fixed
mini-batches used by the other stochastic methods. This allows for curvature estimates to depend on
much more data than can be reasonably processed in a single mini-batch.

Notably, for methods like LM which deals with an approximate Hessian directly or HF which
deal with the exact Fisher indirectly via matrix-vector products, such a scheme would be impossible
to implement efficiently, as the exact Fisher matrix (or Generalized-Gauss-Newton) seemingly cannot
be summarized using a compact data structure whose size is independent of the amount of data
used to estimate it. Indeed, it seems that the only representation of the exact Fisher which would be
independent of the amount of data used to estimate it would be an explicit n X n matrix (which is far
too big to be practical). Because of this, HF and related methods must base their curvature estimates
only on subsets of data that can be reasonably processed all at once, which limits their effectiveness
in the stochastic optimization regime [11].
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A.7. Learning Rate Line Search

Algorithm 2 Learning Rate Line Search
Initialize Irs = (1e-6,9) with step size of 0.125, empty list loss_list = []
for Ir € Irs do

Update network: 00+ = 0®) 4 15 x v,

Evaluate network: loss;,. = f(6(¢+1)

Add current loss to list: loss_list.append(loss;;)

Reset network to 6*
end

Ir_best = argmin (loss_list)
Update network with Ir of least loss: O+ — 9() 4 Ir_best * Ugn

Appendix B. Experimental Setup

For the regression task, we fit the Sine function with a simple two-layer fully-connected MLP, ELU
as the non-linear activation function, and mean square error as the loss function. For the classification
task, we use the MNIST datasets, with 28 x 28 resolution, 60000 training samples and 10000 testing
samples. We train a convolutional NN with two convolution layers, and Randomized Leaky RelLu
as the non-linear activation function, two max-pooling layers and one fully-connected layers. We
compare LM method with popular first-order methods (SGD, Adam) and second-order methods
(L-BFGS, Hessian-Free, KFAC). We use the best hyper-parameters per optimizer. See appendix for
more details.

We set the hyper-parameters to be the best for each optimizer. For SGD we set the learning rate
(Ir) to be 0.05, with momentum=0.9 and weight decay=5x10"%, for Adam, we set the Ir to be 0.01,
for L-BFGS, we set the Ir to 0.005, for Hessian Free, we set the Ir to be 0.1, for KFAC, we set the
Ir to 0.05. For LM, we set the initial Ir to be 1 and initial A to 1 as well. For the full sized MNIST
problem we use KFAC with a Ir of 1, Adam with a Ir of 0.05, SGD with a Ir of 0.1. Keeping the rest
of the learning rates the same.

Appendix C. Further Experiments

Wee see that LM can learn the regression problem with a single iteration compared to the results of
Adam and KFAC.

075

Figure 3: Comparison of optimizers on simple regression problem a) LM b) KFAC c) Adam
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To then see how the optimizers would do with a limited dataset, we swtiched the train and the
test set and reran the algorithms. We again found that the LM method outperformed the rest, both in
the few number of iterations it took to reach a high accuracy and overall accuracy at the end of an
epoch.

training loss curve testing loss curve

— SGD
Adam
— LM
—— KFAC
— HF

iter iter

25| — vanilla
line-search
—— momentum+uphill+max-diag 08

—— vanilla
line-search
—— momentum-+uphill+max-diag

1 1 0 E) a0 50 &0 E ) s 100 I 0 ) n @ 50 & 0 ) % 100

((a)) Training Loss ((b)) Training Accuracy

[N |

—— vanilla
line-search
—— momentum+uphill+max-diag

0so \—/‘\J‘—\~\¢_7,,,;_/\\"\r\,f./\ 04 — vanilla
line-search
025 03 —— momentum-+uphill+max-diag
1 10 20 30 40 50 &0 70 80 %0 100 1 10 20 30 40 50 60 0 80 90 100
((c)) Testing Loss ((d)) Testing Accuracy

Figure 5: Ablation Study: CNN on Full MNIST (100 Epochs)
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Appendix D. Future Work

Very recently [14] has shown that one can efficiently learn from large datasets by selecting subsets
based on curvature information to train on. In the experiments they see that using curvature informed
optimizers can significantly boost performance. We believe by applying our LM method or PSGD to
optimize networks with these AdaCore subsets, we can achieve better generalization compared to
first order methods.

Furthermore very recently [13] sees the use of second order methods to greatly benefit optimiza-
tion of causal models. We believe there is potential to combine ideas from this paper with more
efficient methods like PSGD and apply them to causal models and many other machine learning
frameworks.
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