
HOOML2022: Order up! The Benefits of Higher-Order Optimization in Machine Learning

Effects of momentum scaling for SGD

Dmitry A. Pasechnyuk DMIVILENSKY1@GMAIL.COM

Alexander Gasnikov GASNIKOV@YANDEX.RU

Martin Takáč TAKAC.MT@GMAIL.COM

Abstract
The paper studies the properties of stochastic gradient methods with preconditioning. We focus on
momentum updated preconditioners with momentum coefficient β. Seeking to explain practical effi-
ciency of scaled methods, we provide convergence analysis in a norm associated with preconditioner,
and demonstrate that scaling allows one to get rid of gradients Lipschitz constant in convergence
rates. Along the way, we emphasize important role of β, undeservedly set to constant 0.99...9 at the
arbitrariness of various authors. Finally, we propose the explicit constructive formulas for adaptive
β and step size values.

1. Literature review

Preconditioning is long and widely known practice in numerical methods and mathematical pro-
gramming [4–6]. With the recent surge of interest to statistical learning applications, there were
proposed methods applicable to finite-sum function minimization [1, 7, 12]. In combination with
momentum technique [14], preconditioning gave rise to adaptive methods, extensively used in appli-
cations [8, 11, 18, 21]. Recently, there has been a return to full-matrix methods using momentum
[3, 10, 17, 20]. This gave significant benefit in practice, but in theory there still was no established
with global convergence of SGD [2, 16]. Following [19], we analyse convergence of preconditioned
gradient descent in preconditioner associated norm to get rid of gradient Lipschitz constant L. This
allows us to determine step size independent on L and adaptive momentum parameter β. We also
show the starting acceleration of convergence as in [9].

2. One-step effects

Firstly, we consider optimization problem minx∈Rn f(x), where f : Rn → R is non-convex
continuous function. Every additional requirement on f is introduced in appropriate place of the text
where it is needed to simplify reasoning. Let us start with considering the simplest preconditioned
method Scaled SGD

xt+1 = xt − ηtP
−1
t gt

with variable preconditioner Pt ∈ Sn++. Our goal for the nearest narration is to estimate the rate of
function decreasing. For this purpose, we need to operate with a majorant of f . We assume that f has
Lipschitz continuous gradient, that is f(xt+1) ⩽ f(xt)+ ⟨∇f(xt), xt+1−xt⟩+ Lt

2 ∥xt+1−xt∥2, on
each of segment [xt, xt+1], t = 1, 2, ... of methods trajectory with a corresponding Lt = L(xt, xt+1).
This assumption is weaker than uniform L-smoothness. This point of view allows to get rid of
uniform constant L, but still does not tell anything about its value, because properties of the norm

© D.A. Pasechnyuk, A. Gasnikov & M. Takáč.

EFFECTS OF MOMENTUM SCALING FOR SGD

∥ · ∥ are not used anyhow. Then, if we go to norm ∥x∥Pt = ⟨Ptx, x⟩1/2 associated with Pt, we have

f(xt+1) ⩽ f(xt)− ηt⟨∇f(xt), P
−1
t gt⟩+ Ltη2t

2 ∥gt∥∗
2

Pt
,

for some Lt = L(xt, xt+1, Pt) which is believed to be smaller than previous L(xt, xt+1) if precondi-
tioner is proper. The best case is when Pt = ∇2f(xt) which implies that condition number is close
to 1 in some vicinity of xt, so it is also common to estimate convergence rate in ∥ · ∥∇2f(xt) norm.

Another upper bound for f comes from M -Lipschitz continuity of ∇2f :

f(xt+1) ⩽ f(xt)− ηt⟨∇f(xt), P
−1
t gt⟩+ η2t

2 ⟨∇
2f(xt)P

−1
t gt, P

−1
t gt⟩+ Mη3t

6 ∥P−1
t gt∥3,

which can be equivalently rewritten as

f(xt+1) ⩽ f(xt)− ηt⟨∇f(xt), P
−1
t gt⟩+ η2t

2 ∥gt∥
∗2

Pt[∇2f(xt)]
−1P⊤

t
+

Mη3t
6 ∥P−1

t gt∥3.
Thus, we have got rid of Lt and replaced it with term without any uniform constant, but in different
Pt

[
∇2f(xt)

]−1
P⊤
t norm, plus additional cubic term. The new form of quadratic term gives us an

opportunity to obtain the explicit replacement for Lt.
Indeed, we can think of ∇2f(xt)P

−1
t as an inexactness of Pt, its closeness to the Hessian value,

which can be bounded as follows:

∇2f(xt)P
−1
t ≼ (1 + ∆t)I

where ideally 0 ⩽ ∆t ≪ 1. Hereinafter, ≼ is used to compare arbitrary matrices with matrices of the
form const · I , so we can define it as follows: A ≼ bI means λmax(A) ≤ b. Then, we have

f(xt+1) ⩽ f(xt)− ηt⟨∇f(xt), P
−1
t gt⟩+ (1+∆t)η2t

2 ∥gt∥∗
2

Pt
+

Mη3t
6 ∥P−1

t gt∥3.
Thus, we turned 2nd-order term with constant L into 2nd-order term with constant (1 + ∆t), which
is slightly greater than 1, and cubic term, so the behaviour of preconditioned gradient descent is as
close to that of Newton method as Pt is to ∇2f(xt).

From now, let us consider only preconditioners of the form

Pt+1 = βt+1Pt + (1− βt+1)dt+1, (1)

where dt+1 = diag
(
∇2f(xt+1)

)
and P0 = I . One can use any other proper update instead of dt+1,

which preserves positive definiteness of Pt (if f is non-convex, positive truncation should be applied
to dt+1, see [13]). We assume that dt is a good approximation of Hessian, so that Pt is maintained
to be close to Hessian. In the case of diagonal dt, we assume that ∇2f is almost diagonal. By
introducing two more inexactness relating preconditioner and Hessian to update term dt

∇2f(xt)d
−1
t ≼ (1 + σ)I (1− δ−t)I ≼ Ptd

−1
t ≼ (1 + δ+t)I,

we get the opportunity to express each one of σ, δ and ∆ through other ones. Estimating a local
Lipschitz constant of f after scaling, we obtain the following proposition that bound ∆.

Proposition 1 For preconditioner updated in accordance with (1), inexactness ∆t depends on
inexactness δ−t as follows ∆t ⩽ 1+σ

1−min{δ−t ,βt}
− 1.

Note, that the dependency on βt is hidden behind δ−t . But δ−t grows with βt, δ−t = 0 for βt = 0 and
δ−t ∈ [0, 1), so our new bound on ∆t behaves similarly to the previous one.
It is obvious that βt = 0 is the best choice for the case gt = ∇f(xt). Otherwise, small βt also leads
to additional penalty on the variation of Pt. If gt is unbiased estimator of ∇f(xt), this penalty goes
with variation ∥s∥∗2

Pt
, where s = gt −∇f(xt). Since we consider ∥ · ∥Pt norm, penalty appears when

we go from ∥ · ∥Pt to ∥ · ∥Pt+1 norm.

2

EFFECTS OF MOMENTUM SCALING FOR SGD

Proposition 2 For any s ∈ Rn, it holds that ∥s∥∗2
Pt+1

⩽ (1 + 1−βt+1

1/δ+t +βt+1
)∥s∥∗2

Pt
.

Appearing factor is a penalty. For fixed δ+t , it decreases inversely proportional to βt, have maximum
in βt = 0 with value 1 + δ+t and minimum in βt = 1 with value 1. If δ+t depends on βt, penalty may
behave in a more complicated way, but still pushes the best value of βt away from zero.
It remains to relate δt and βt to obtain a descent lemma depending only on a choice of βt. There are
two ways to do this: assuming, that Hessian changes only a little from iteration to iteration, or not.

Proposition 3 For any (dt ≽ 0)∞t=0, it holds that δ+t+1 = βt+1κt+1, δ
−
t+1 = βt+1χt+1, where

κt =
[
maxi [Pt−1]ii
mini [dt]ii

− 1
]
+
, χt =

[
1− mini [Pt−1]ii

maxi [dt]ii

]
+

.

Proposition 4 If f is strong self-concordant [15], that is ∀x, y, z, w ∈ Rn

diag
(
∇2f(y)−∇2f(x)

)
≼ N∥y − x∥diag(∇2f(z))diag

(
∇2f(w)

)
for some N > 0, then it holds that δ+t+1 ⩽ βt+1[δ

+
t + δ+t

√
1 + δ+t Nηt∥gt∥∗Pt

− 1]+.

We can finally estimate the descent on the one step, depending only on β and not on any of
inexactnesses.

Theorem 5 (Descent Lemma) Point xt+1 generated by Scaled SGD on iteration t satisfies

E [f(xt+1)] ⩽ f(xt)− ηt
2 ∥∇f(xt)∥∗

2
Pt

+ ηt
2 ((

ηt(1+σ)
1−βtχt

)2 + ηt(1+σ)
1−βtχt

− 1)∥gt∥∗
2

Pt

+ ηt
2 (1 +

(1−βt+1)βt

1/κt+βtβt+1
)∥gt −∇f(xt)∥∗

2
Pt

+
M ′η3t

6 (1+σ
1−βtχt

)3/2∥gt∥∗
3

Pt
.

3. Cumulative effects

Further, we consider finite-sum optimization problem minx∈Rn f(x) := 1
m

∑m
i=1 fi(x). Such a form

of objective function became widely used due to the recent surge of interest in statistical learning
applications.

We assume that Lipschitz constants are close to 1, in view of what we have demonstrated, but
further we do not specify their values. This allows us to claim that following results stay valid
not only for the preconditioned methods, but for any gradient method if the difference between Lt,
t = 1, 2, ... is significant.

Theorem 6 If ηt ⩽ min{αp
3 , 34

p
5p+1}

1
Lt

, sequence of the points generated by Scaled L-SVRG

satisfies E
[
∥∇f(xT)∥∗

2
Pt

]
⩽ 4

αp
L
T [f(x0) − f(x∗) + 2Γ

∑T+1
t=2 LtE

[
(1− βt)∥xt − yt∥22

]
], where

L = T
1
L1

+···+ 1
LT

is a harmonic average of Lt, t = 1, ..., T .

Note, that harmonic average, which appears in convergence rate estimates too rarely by the way, has
the wonderful property that it is minimum-dominated. In particular, T∑T

t=1 1/Lt
⩽ T mint=1,...,T Lt.

This implies that it does not matter how big is one of the Lt (or all of them, except one), their
harmonic average will be bounded and stuck to minimum of the elements being averaged, even if
some of those variable Lt are infinite. Moreover, harmonic average is always less than arithmetic
mean. So, we say that local Lipschitz constants are very well-aggregated in final convergence rate. If
algorithm maintain Lt close to one for each t = 1, 2, ..., final convergence rate is almost independent
on global Lipschitz constant!

3

EFFECTS OF MOMENTUM SCALING FOR SGD

Algorithm 1 Scaled L-SVRG

Data: p ∈ (0, 1), {ηt > 0}∞t=0, {0 < βt < 1}∞t=0, x0
P0 = I , y0 = x0
for t ⩾ 0 do

Draw it ∈ {1, ...,m} from uniform distribution
gt = ∇fit(xt)−∇fit(yt) +∇f(yt)

yt+1 =

{
yt with probability p
xt with probability 1− p

xt+1 = xt − ηtP
−1
t gt

Draw zt ∈ {−1, 1}n from Rademacher distribution
Pt+1 = βt+1Pt + (1− βt+1)diag

(
zt ◦ ∇2f(xt+1)zt

)
end for

Note that obtained dependence of
the norm of gradient after T itera-
tions of algorithm on βt allows one to
choose βt so that error term in Theo-
rem 6 can take a small value. At least,
we should guarantee its boundedness
for every T . This can be achieved
by the several ways: by choosing
βt depending on pre-known number
of iterations T , or by making it de-
pendent on some hyperparameter se-
quence. In the first case, we notice
that for βt = 1− 1/(TLt∥xt − yt∥22),
error term is equal to 2Γ and does not affect the convergence rate. But with this approach βt values
can be chosen too close to 1, which is not efficient in practice. To prevent this, we can bound the error
term with the series with upper limit +∞. Then, it is sufficient to choose βt = 1−at/(Lt∥xt−yt∥22),
where at > 0 and

∑+∞
t=2 at is converging, so that error term is bounded.

4. Synthesis

0.0 0.2 0.4 0.6 0.8 1.0
t

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
t

Figure 1: Intuition for the βt choice.

In this section, we continue the convergence analysis started
in “One-step effects” and based on descent lemma, using the
sketch of the proof from “Cumulative effects”. To simplify
the reasoning, we consider Scaled SGD without variance
reduction but updating step direction as gt = ∇f(xt) with
probability 1− p.

The following corollary of Theorem 5 shows the con-
vergence of Scaled SGD updating step direction as gt =
∇f(xt) with probability 1− p.

Theorem 7 If ηt ⩽ min
{ 1−βtχt

(1+σ)(Φ+
√

M ′/6·∥gt∥∗Pt
)
, 1/(1+κt)+βt

1−p

}
, sequence of the points generated

by Scaled SGD satisfies mint=1,...,T ∥∇f(xt)∥∗
2

Pt
= O(f(x0)−f(x∗)

T).

Note that the first term in ηt ⩽ min{·, ·} is decreasing, and the second one is increasing, so there is
βt at which upper bound on ηt has a fracture and starting from which it is determined by decreasing
second term (see Figure 1). Thus, upper bound on ηt attains its maximum with respect to βt at this
point. So, we have equation 1−βtχt

(1+σ)(Φ+
√

M ′/6·∥gt∥∗Pt
)
= 1/(1+κt)+βt

1−p , which leads to

βt = max
{
βt−1

2 , (1−p)(1+κt+χt)

(1+σ)(Φ+
√

M ′/6·∥gt∥∗Pt
)+(1−p)χt

− 1
}
. (2)

5. Observed effects

Let’s consider the binary logistic regression task minx∈Rn{f(x) := 1
m

∑m
i=1 log(1+e−bi(a ◦ ai)

⊤x)},
where {(ai, bi)}mi=1 is a dataset containing features ai and classes bi ∈ {−1, 1}, and a ∈ Rn is vector
of random i.i.d. scaling factors drawn from U [−A,A] and corresponding to each feature, ◦ denotes

4

EFFECTS OF MOMENTUM SCALING FOR SGD

Hadamard product. We use a9a dataset with m = 32561, n = 123. For logistic regression problem
in this formulation, ∇f is Lipschitz continuous with constant L = 1

4∥(a ◦ a1 ... a ◦ am)∥2 = O(A),
so that L is proportional to A, which is helpful for the design of experiments. In all the experiments
we froze the following hyperparameters: batch size = 100, p = 0.9.

0.95 0.96 0.97 0.98 0.99 1.00

0.35

0.40

0.45

0.50

0.55

0.60

f(x
t)

a9a, A = 0.1
Scaled L-SVRG, = 1.25e 01, T = 300

* = 9.50e 01

0.95 0.96 0.97 0.98 0.99 1.00

10 7

10 6

10 5

10 4

10 3

||
f(x

t)|
|2

a9a, A = 0.1
Scaled L-SVRG, = 1.25e 01, T = 650

* = 9.52e 01

0.970 0.975 0.980 0.985 0.990 0.995 1.000

0.3225

0.3250

0.3275

0.3300

0.3325

0.3350

0.3375

0.3400

0.3425

f(x
t)

a9a, A = 10
Scaled L-SVRG, = 6.25e 02, T = 300

* = 9.75e 01

0.970 0.975 0.980 0.985 0.990 0.995 1.000

10 4

||
f(x

t)|
|2

a9a, A = 10
Scaled L-SVRG, = 6.25e 02, T = 650

* = 9.78e 01

Figure 2: Dependence of achieved precision on βt ≡ β.

Figure 2 summarizes the results of Scaled L-SVRG runs with different β’s. Horizontal axis
measures value of β, vertical axis measures objective function value f(xT) (or ∥∇f(xT)∥2) after
T = 300 iterations of the algorithm. Firstly, scaling give significant benefit in comparison with not
scaled method, corresponding to β = 1. (More detailed experiments are presented in Appendices C
and D). It can be seen that dependence of achieved precision on β changes with increasing of A:
minimum of the corresponding function is getting closer to β = 1, its values on the left from
minimum are growing and its growth rate near β = 1 is significantly increasing. This relationship
between β and A reflects the trade-off between variance compensation and scaling. Variance affects
the convergence if β is small: increasing of L leads to the increasing of δ+t , which increases the
accumulating error term in Proposition 2. To explain the behaviour near β = 1, consider the
A = 0.1 case, where variance error terms are insignificant. Values begin to grow rapidly starting
from β ≈ 0.97 and stop on some fixed value at β = 1. This behaviour is described in Proposition 1,
where we have shown the O(1/(1− β)) growth of gradients Lipschitz constant. The boundedness at
β = 1 can be explained by the proper choice of P0, such that δ−t ̸= 1, even if β = 1. Thus, the main
outline of our theory is successfully confirmed on the experiment.

10 2 10 1 100 101

A

0.93

0.94

0.95

0.96

0.97

0.98

0.99

*

a9a

0 50 100 150 200 250 300
t, iteration

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

*

a9a

Figure 3: Dependencies of optimal β∗.

The dependence of optimal β∗ on smooth-
ness characteristic A is presented on the Fig-
ure 3a. It can be seen that β∗ grow slowly
with increasing of A (plot is close to linear
in logarithmic scale for A). This means that
there is no need for β to be in proportional
dependence with η or L. On the other hand,
best choice of β is close to standard β ≈ 0.99
for large enough L (and it does not matter, L = 100 or L = 200, because they are of the same order),
while small L make choice of β very sensitive (that is, one need to make a distinctions between
L = 0.01 and L = 0.001, although they are pretty close to each other).

In addition to dependence of optimal β∗ on smoothness of the problem, we test the dependence
on the number of iterations. This experiment gives a rough estimate for the best choice of βt. On
the Figure 3b, one can see the dependence of quasi-optimal (in a sense described above) β∗ on the
number of iterations. Optimal β∗ is getting closer to β = 1 with increasing number of iterations,
while at the beginning of methods operation the best value is significantly lower. The latter can be
explained by the need to rapidly adapt Pt to some good estimation of component-wise scaling from
its initial value P0 = I . On the other hand, the convergence of optimal β∗ to 1 as the iteration number
tends to infinity can be explained in view of remark from the end of “Cumulative effects” section.

5

EFFECTS OF MOMENTUM SCALING FOR SGD

References

[1] Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):
251–276, 1998.

[2] Albert S Berahas, Majid Jahani, Peter Richtárik, and Martin Takáč. Quasi-newton methods
for machine learning: forget the past, just sample. Optimization Methods and Software, pages
1–37, 2021.

[3] Aleksandr Beznosikov, Aibek Alanov, Dmitry Kovalev, Martin Takáč, and Alexander Gasnikov.
On scaled methods for saddle point problems. arXiv preprint arXiv:2206.08303, 2022.

[4] Charles G Broyden. Quasi-newton methods and their application to function minimisation.
Mathematics of Computation, 21(99):368–381, 1967.

[5] WC Davidon. Variable metric method for minimization (research and development report
anl-5990, rev. ed.). Argonne IL: Argonne National Laboratory, US Atomic Energy Commission,
1959.

[6] John E Dennis and Jorge J Moré. Quasi-newton methods, motivation and theory. SIAM review,
19(1):46–89, 1977.

[7] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of machine learning research, 12(7), 2011.

[8] Alina Ene and Huy Lê Nguyen. Adaptive and universal algorithms for variational inequalities
with optimal convergence. Proceedings of the AAAI Conference on Artificial Intelligence, 36
(6):6559–6567, 2022.

[9] Slavomı́r Hanzely, Dmitry Kamzolov, Dmitry Pasechnyuk, Alexander Gasnikov, Peter Richtárik,
and Martin Takáč. A damped Newton method achieves global O

(
1
k2

)
and local quadratic

convergence rate. Advances in Neural Information Processing Systems, 35, 2022.

[10] Majid Jahani, Sergey Rusakov, Zheng Shi, Peter Richtárik, Michael W Mahoney, and Martin
Takáč. Doubly adaptive scaled algorithm for machine learning using second-order information.
International Conference on Learning Representations (ICLR), 2021.

[11] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[12] Xi-Lin Li. Preconditioner on matrix Lie group for SGD. arXiv preprint arXiv:1809.10232,
2018.

[13] Santiago Paternain, Aryan Mokhtari, and Alejandro Ribeiro. A Newton-based method for
nonconvex optimization with fast evasion of saddle points. SIAM Journal on Optimization, 29
(1):343–368, 2019.

[14] Boris T Polyak. Some methods of speeding up the convergence of iteration methods. USSR
computational mathematics and mathematical physics, 4(5):1–17, 1964.

6

EFFECTS OF MOMENTUM SCALING FOR SGD

[15] Anton Rodomanov and Yurii Nesterov. Greedy quasi-Newton methods with explicit superlinear
convergence. SIAM Journal on Optimization, 31(1):785–811, 2021.

[16] Anton Rodomanov and Yurii Nesterov. Rates of superlinear convergence for classical quasi-
newton methods. Mathematical Programming, 194(1):159–190, 2022.

[17] Abdurakhmon Sadiev, Aleksandr Beznosikov, Abdulla Jasem Almansoori, Dmitry Kamzolov,
Rachael Tappenden, and Martin Takáč. Stochastic gradient methods with preconditioned
updates. arXiv preprint arXiv:2206.00285, 2022.

[18] Tom Schaul, Sixin Zhang, and Yann LeCun. No more pesky learning rates. In International
conference on machine learning, pages 343–351. PMLR, 2013.

[19] Katya Scheinberg and Xiaocheng Tang. Practical inexact proximal quasi-newton method with
global complexity analysis. Mathematical Programming, 160(1):495–529, 2016.

[20] Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and Michael Ma-
honey. Adahessian: An adaptive second order optimizer for machine learning. Proceedings of
the AAAI Conference on Artificial Intelligence, 35(12):10665–10673, 2021.

[21] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

Appendix A. Additional theory

Remark 8 It turns out that formula in Theorem 5 includes both βt and βt+1. To find optimal βt we
should consider sum of descents on two corresponding steps, but it could make the analysis more
complicated. One can assume β1 = β2 = ... ≡ β to find optimal β. But it is easy to see that

argmin
β

(1− β)β

1/κt + β2
= 0, argmin

β

1 + σ

1− βtχt
= 0,

so we lose adaptivity. This defect is common for δt linearly dependent on β.
In practice, β is usually chosen to be close to 1, assuming that dependence of Lt on β is “weaker”

than dependence of penalty for variance on β. So, it worth estimate the worst case (with respect to
the β) multiplier appearing in variance term. This can be done explicitly

1 + max
β

(1− β)β

1/κt + β2
= 1 +

1

2

(√
κt + 1− 1

)
= O

(√
L

µ

)
.

On the other hand, the worst case smoothness multiplier is L and is not being accumulated with
iterations of the algorithm. Therefore, it was right to assume that β should be close to 1 giving
priority to restrain the growth of variance term.

Remark 9 Note, that second term in (2) is less than zero while ∥gt∥∗Pt
⩾

6

M ′

(
(1− p)(1 + κt)

1 + σ
− Φ

)2

,

so βt should be set to zero on the first iterations (the more ill-conditioned is the function, the more
iterations are needed). On the other hand, ∥gt∥∗Pt

→ 0, so βt on the later iteration is determined

by
(1− p)(1 + κt)− (1 + σ)Φ

(1− p)χt + (1 + σ)Φ
, which is smaller than one if 1 + κt − χt <

2Φ(1 + σ)

1− p
(the more

7

EFFECTS OF MOMENTUM SCALING FOR SGD

well-conditioned is the function, the less βt is). In addition, note that βt is increasing function of κt
and decreasing function of χt.

Let’s now establish the starting acceleration of the convergence, achieved by scaled methods. For
this purpose we change (4) as

x ⩾
−1 +

√
3 + 2A∥gt∥∗Pt

2(1 +A∥gt∥∗Pt
)

,

which is solution to (1 +A∥gt∥∗Pt
)x2 + x− 1/2 = 0. Then, following the analysis proposed in [9],

we state
ηt ⩾

1

4max
{
1,
√
A∥gt∥∗Pt

} ,
which leads to

ηt∥gt∥∗Pt
⩾

∥gt∥∗

2
Pt

4
, if ∥gt∥∗Pt

< 1/A

∥gt∥∗
3/2

Pt

4
√
A

, otherwise.

Thus, we have two cases of convergence lemma for Lyapunov function Vt introduced above:
E [Vt+1] ⩽ Vt −

1

16
(2∥∇f(xt)∥∗

2
Pt

+ ∥gt∥∗
2

Pt
), if ∥gt∥∗Pt

< 1/A

E [Vt+1] ⩽ Vt −
1

16
√
A

(
2
∥∇f(xt)∥∗

2
Pt

∥gt∥∗
1/2

Pt

+ ∥gt∥∗
3/2

Pt

)
, otherwise.

Thus, at the starting iterations, when ∥gt∥∗Pt
⩾

3

M ′

√
1 + σ

1− βtχt
, convergence rate of scaled method

is O
(

1

T 3/2

)
. Moreover, the greater is βt, the shorter this starting acceleration lasts. But min

βt

A =

M ′

3
√
1 + σ

, so there cannot be an acceleration on the latter iterations. Anyway, βt could be chosen in

a way to lengthen this starting convergence.

Appendix B. Omitted proofs

B.1. Proof of Proposition 1

Then, inexactness ∆t+1 can be estimated as follows

∇2f(xt+1)P
−1
t+1 =

1

1− βt+1
∇2f(xt+1)d

−1
t+1−

1

1− βt+1
∇2f(xt+1)d

−1
t+1

[
1− βt+1

βt+1
dt+1P

−1
t + I

]−1

,

using Woodbury identity

(A+B)−1 = A−1 −A−1(AB−1 + I)−1,

that implies

∆t ⩽
1 + σ

1− βt
− 1,

which is increasing with β, always greater than σ, increases linearly near β = 0 and inversely
proportional near β = 1.

8

EFFECTS OF MOMENTUM SCALING FOR SGD

Estimation for ∆ is rough near β = 1. Its because we neglect second term in Woodbury identity.
To work it out, we use the relation between Pt and dt+1 to bound the second term in Woodbury
identity, using the formula for Pt+1:

1

1− βt+1
Pt+1d

−1
t+1 =

βt+1

1− βt+1
Ptd

−1
t+1 + I,

βt+1

1− βt+1
Ptd

−1
t+1 =

1

1− βt+1

(
Pt+1d

−1
t+1 − I + βt+1I

)
≽

βt+1 − δ−t+1

1− βt+1
I,

1− βt+1

βt+1
dt+1P

−1
t + I ≼

1− δ−t+1

βt+1 − δ−t+1

I,[
1− βt+1

βt+1
dt+1P

−1
t + I

]−1

≽
βt+1 − δ−t+1

1− δ−t+1

I.

Substituting this bound in Woodbury identity finishes the proof.

B.2. Proof of Proposition 2

Let’s apply Woodbury identity to Pt+1:

P−1
t+1 =

1

βt+1
P−1
t − 1

βt+1
P−1
t

[
βt+1

1− βt+1
Ptd

−1
t + I

]−1

.

Then,

⟨s, P−1
t+1s⟩ =

1

βt+1
⟨s, P−1

t s⟩ − 1

βt+1
⟨s,
([

βt+1

1− βt+1
Ptd

−1
t + I

]
Pt

)−1

s⟩.

On the other hand,
βt+1

1− βt+1
Ptd

−1
t + I ≼

(
βt+1

1− βt+1
(1 + δ+t) + 1

)
I ≼

1 + βt+1δ
+
t

1− βt+1
I.

Finally, we substitute this bound in equality on variation and obtain that

∥s∥∗2
Pt+1

⩽
1 + δ+t

1 + βt+1δ
+
t

∥s∥∗2
Pt

=

(
1 +

1− βt+1

1/δ+t + βt+1

)
∥s∥∗2

Pt
. (3)

B.3. Proof of Proposition 3

It follows from

Pt+1d
−1
t+1 = (1− βt+1)I + βt+1Ptd

−1
t+1 ≼

[
1 + βt+1

(
maxi [Pt]ii
mini [dt+1]ii

− 1

)]
I.

B.4. Proof of Proposition 4

We need in the following corollary of strong self-concordance:

Lemma 10 (Rodomanov–Nesterov [15]) For all x, y ∈ Rn, it holds that
diag

(
∇2f(x)

)
1 +N∥y − x∥diag(∇2f(x))

≼ diag
(
∇2f(y)

)
≼
(
1 +N∥y − x∥diag(∇2f(x))

)
diag

(
∇2f(x)

)
,

where A ≼ B means ⟨(B −A)x, x⟩ ⩾ 0 for all x ∈ E.

9

EFFECTS OF MOMENTUM SCALING FOR SGD

Presented lemma implies the bound on δ which takes into account that Ptd
−1
t+1 term is as small as the

step on iteration t. We have(
1 +Nηt∥gt∥∗Pt

√
1 + δ+t

)−1

dt ≼ dt+1 ≼ (1 +N∥xt+1 − xt∥dt) dt ≼
(
1 +Nηt∥gt∥∗Pt

√
1 + δ+t

)
dt,

Pt+1d
−1
t+1 = (1− βt+1)I + βt+1Ptd

−1
t+1 ≼

[
1 + βt+1(δ

+
t + δ+t

√
1 + δ+t Nηt∥gt∥∗Pt

− 1)

]
I,

which implies the statement of the proposition.

B.5. Proof of Theorem 5

f(xt+1) ⩽ f(xt)− ηt⟨∇f(xt), P
−1
t gt⟩+

η2t
2

1 + σ

1− βtχt
∥gt∥∗

2
Pt

+
M ′η3t
6

(
1 + σ

1− βtχt

)3/2

∥gt∥∗
3

Pt

−ηt⟨∇f(xt), P
−1
t gt⟩ = −ηt

2
∥∇f(xt)∥∗

2
Pt

− ηt
2
∥gt∥∗

2
Pt

+
ηt
2
∥gt −∇f(xt)∥∗

2
Pt

E
[
∥gt+1 −∇f(xt+1)∥∗

2
Pt+1

]
⩽

(
1 +

(1− βt+1)βt
1/κt + βtβt+1

)
∥gt −∇f(xt)∥∗

2
Pt

+ E
[
∥∇f(xt+1)−∇f(xt)∥∗

2
Pt

]
∥∇f(xt+1)−∇f(xt)∥∗

2
Pt

⩽ η2t

(
1 + σ

1− βtχt

)2

∥gt∥∗
2

Pt

B.6. Proof of Theorem 6

We will demonstrate the convergence of the method for such a Lyapunov function Vt = f(xt) −
f(x∗) + at∥xt − yt∥2Pt

. Due to Lt-Lipschitz smoothness of f , we have

E [Vt+1] ⩽ f(xt)− f(x∗)− ηt⟨∇f(xt), P
−1
t ∇f(xt)⟩+

η2tLt

2
E
[
∥gt∥∗

2
Pt

]
+ at+1E

[
∥xt+1 − yt+1∥2Pt+1

]
.

It can be easily proven that

E
[
∥gt∥∗

2
Pt

]
⩽ 3∥∇f(xt)∥∗

2
Pt

+ 6L2
t ∥xt − yt∥2Pt

.

We also need in the following lemma describing the properties of Hutchinson diagonal approximation

Lemma 11 (Jahani et al. [10]) For L-Lipschitz smooth function f , it holds that

1.
∣∣[zt ◦ ∇2f(xt+1)zt

]
i

∣∣ ⩽ Γ ⩽
√
nL.

2. ∃δ ⩽ 2(1− β)Γ such that ∀t : ∥Pt+1 − Pt∥∞ ⩽ δ.

Then, we can bound last term of Vt+1 as follows

E
[
∥xt+1 − yt+1∥2Pt+1

]
⩽ pη2tE

[
∥gt∥∗

2
Pt

]
+ (1− p)(1 + ηtbt)∥xt − yt∥2Pt

+ (1− p)
ηt
bt
∥∇f(xt)∥∗

2
Pt

+ 2ΓE
[
(1− βt+1)∥xt+1 − yt+1∥22

]

10

EFFECTS OF MOMENTUM SCALING FOR SGD

due to Fenchel–Young inequality ⟨∇f(xt), xt − yt⟩ ≤ 1
bt
∥∇f(xt)∥∗

2
+ bt∥xt − yt∥2 for some

sequence bt > 0, t = 1, 2, ... we specify later. Now,

E [Vt+1] ⩽ f(xt)− f(x∗)− ηt

(
1− (1− p)

at+1

bt

)
∥∇f(xt)∥∗

2
Pt

+ at+1(1− p)(1 + ηtbt)∥xt − yt∥2Pt

+ η2t

(
Lt

2
+ at+1

)(
3∥∇f(xt)∥∗

2
Pt

+ 6L2
t ∥xt − yt∥2Pt

)
+ 2at+1ΓE

[
(1− βt+1)∥xt+1 − yt+1∥22

]
⩽ f(xt)− f(x∗)− ηt

(
1− (1− p)

at+1

bt
− 3at+1ηt − 3Ltηt

)
∥∇f(xt)∥∗

2
Pt

+ at+1

(
(1− p)(1 + ηtbt) + 3η2

(
Lt

at+1
+ 2

)
L2
t

)
∥xt − yt∥2Pt

+ 2at+1ΓE
[
(1− βt+1)∥xt+1 − yt+1∥22

]
.

Finally, we determine the step size ηt satisfying
1− (1− p)

at+1

bt
− 3at+1ηt − 3Ltηt ⩾

1

4
,

(1− p)(1 + ηtbt) + 3η2t

(
Lt

at+1
+ 2

)
L2
t ⩽

at
at+1

.

We can set at+1 = Lt, bt = p/ηt, ηt = ct/Lt (this is only a comfortable option, but it is not
unique; one can try to find an optimal one) for every t = 1, 2, ... and variable sequence ct, and after
substitution we solve it with respect to ct to obtain ηt ⩽ min

{
αp
3 , 34

p
5p+1

}
1
Lt

for some α > 0 as a

sufficient condition1. Since the system of inequalities above holds now, we have

E [Vt+1] ⩽ Vt −
ηt
4
∥∇f(xt)∥∗

2
Pt

+ 2Lt−1Γ(1− βt+1)∥xt+1 − yt+1∥22,

that is summed up for t = 1, ..., T to

E
[
∥∇f(xT)∥∗

2
Pt

]
⩽

1∑T
t=1 ηt

[
V0 − V∗ + 2Γ

T+1∑
t=2

Lt−1E
[
(1− βt)∥xt − yt∥22

]]
,

where xT is such that xT = xt with probability ηt/
∑T

k=1 ηk or, in the best-iteration manner,

min
t=1,...,T

∥∇f(xt)∥∗
2

Pt
⩽

1∑T
t=1 ηt

[
V0 − V∗ + 2Γ

T+1∑
t=2

LtE
[
(1− βt)∥xt − yt∥22

]]
.

It is time to remember that, in opposite to standard analysis, ηt depends on Lt in our case, so
we have factor of the form 1/

(∑T
t=1 1/Lt

)
in convergence rate. Writing it as harmonic average

finishes the reasoning.

1. To be pedantic, ηt ⩽ min

{√
p2−1+Lt−1/Lt

3
, 3
4

p
5p+1

}
1
Lt

, but it is necessary that Lt−1/Lt → 1 on the one hand

and Lt is close to 1 on the other hand, so we can find a proper α > 0; note, that if we replace at+1 = Lt with
at+1 = maxk=1,...,t Lk we do not have any problems with at/at+1 ⩽ 1, but need to set η ∝ 1/L that we do not
want to do — this is why Lt is close to 1 is important condition.

11

EFFECTS OF MOMENTUM SCALING FOR SGD

B.7. Proof of Theorem 7

Firstly, let us rewrite the descent lemma in a way to get rid of cubic term, as follows

E [f(xt+1)] ⩽ f(xt)−
ηt
2
∥∇f(xt)∥∗

2
Pt

+
ηt
2
(1− p)

(
1 +

(1− βt+1)βt
1/κt + βtβt+1

)
∥gt −∇f(xt)∥∗

2
Pt

+
ηt
2

[(
1 +

M ′

3

√
1− βtχt

1 + σ
∥gt∥∗Pt

)(
ηt(1 + σ)

1− βtχt

)2

+
ηt(1 + σ)

1− βtχt
− 1

]
∥gt∥∗

2
Pt
.

Denoting
ηt(1 + σ)

1− βtχt
as x and

M ′

3

√
1− βtχt

1 + σ
as A, we get the

ηt
2

(
(1 +A∥gt∥∗Pt

)x2 + x− 1
)

factor

for the term ∥gt∥∗
2

Pt
, which is less than zero and can be neglected if

0 < x ⩽
1

Φ +B(1− βtχt)1/4
√
∥gt∥∗Pt

=
2

1 +
√
5 + 2

√
A∥gt∥∗Pt

⩽
−1 +

√
5 + 4A∥gt∥∗Pt

2(1 +A∥gt∥∗Pt
)

,

(4)

where B denotes the

√
M ′

6
(1 + σ)−1/4 ⩽

√
M ′

6
and Φ =

1 +
√
5

2
is a golden ratio. This leads to

the first upper bound on a step size:

ηt ⩽
1− βtχt

(1 + σ)
(
Φ+B

√
∥gt∥∗Pt

) ⩽
1− βtχt

(1 + σ)
(
Φ+B(1− βtχt)1/4

√
∥gt∥∗Pt

) .
Secondly, to establish the decrease of variance term, we consider Lyapunov function Vt :=

f(xt)− f(x∗) + ∥gt −∇f(xt)∥∗
2

Pt
. Then, we need to upper bound step size once again to obtain

ηt
2
(1− p)

(
1 +

(1− βt+1)βt
1/κt + βtβt+1

)
⩽ 1.

Further, we need to distance βt+1 from zero. It would be to rough to lower bound all β with some
fixed value, so we add the relation limiting the decreasing of β instead: βt+1 ⩾ βt/2. This relation
forces algorithm to be conservative and do not change preconditioner too much on a later iterations,
that seems to be natural, because for a wide class of functions (self-concordant, for example) Hessian
does not change much if step is small enough which holds for small gradients. So, upper bound on
step size in our case looks like

ηt ⩽
1/(1 + κt) + βt

1− p
⩽

2/κt + β2
t

(1− p) (1/κt + βt)
⩽

2

(1− p)

(
1 +

(1− βt+1)βt
1/κt + βtβt+1

)
Thus, if ηt ⩽ min

{ 1− βtχt

(1 + σ)
(
Φ+

√
M ′/6 · ∥gt∥∗Pt

) , 1/(1 + κt) + βt
1− p

}
, we have (now without

accumulating errors!)

E [Vt+1] ⩽ Vt −
ηt
4
∥∇f(xt)∥∗

2
Pt

=⇒ min
t=1,...,T

∥∇f(xt)∥∗
2

Pt
= O

(
f(x0)− f(x∗)∑T

t=1 ηt

)
.

12

EFFECTS OF MOMENTUM SCALING FOR SGD

Appendix C. Supplementary numerical experiments

Firstly, we compare the performance of Scaled L-SVRG and ordinary L-SVRG on the problems
with different smoothness characteristics A. For each value of A, we determine the best values of
βt ≡ β and ηt ≡ η for Scaled L-SVRG, and ηt ≡ η for ordinary L-SVRG by logarithmically
spaced grid search: η ∈ {2−2, ..., 2−10}, β ∈ {1− 2−5, ..., 1− 2−10}, while the precision achieved
by tuned algorithm is estimated on average of 3 runs with random sequences of batches.

Figure 8 shows the results of comparison of Scaled L-SVRG and ordinary L-SVRG for
A ∈ {0.1, 5, 10, 50}. Horizontal axis measures the number of iterations (stochastic gradient evalua-
tions), vertical axis measures the objective function value f(xt), which is more practically interesting,
or squared norm of the gradient ∥∇f(xt)∥2, which is main for the theory in non-convex case. Con-
vergence curves show the average value of quantity measured for 3 runs with random sequences of
batches and are equipped with transparent shades of the size of standard deviation of the measure-
ments. One can see that Scaled L-SVRG converge significantly faster than L-SVRG in all the
cases. Scaled L-SVRG allows one to choose bigger step size even if its value is the same for all the
iterations. Such a significant superiority of Scaled L-SVRG in the case of A = 0.1 might seem to
be unexpected, because scaling with A < 1 leads to decreasing of Lipschitz constant and increasing
of effective step size ∝ 1/L whilst scaling introduced by Scaled L-SVRG seeks to eliminate
this effect. Nevertheless, scaling in algorithm turns out to be efficient through component-wise
adaptivity — we encourage this effect by scaling features with random factors a parametrized by A.

Next experiment is devoted to the choice of step size ηt ≡ η for different values of A (A ∈
{0.1, 5, 10, 50}). For each A, we set βt ≡ β to the best value determined for the Scaled L-SVRG
in the previous experiment and consider η ∈ {2−4, ..., 2−10}. We also do not equip corresponding
convergence curves with standard deviation shades in this experiment: it is not so significant here,
and for most of runs one can estimate the scale of variance with the unaided eye.

Figure 9 shows the difference in convergence rate of Scaled L-SVRG in dependence on choice
of step size. With the increasing of A (and hence L) convergence curves are pressed against the
horizontal axis. Its natural, because effective step size is ∝ 1/L, so efficiency of particular step size η,
getting closer to effective step size, is improving as well, if η is small enough. Starting from A = 50,
big step sizes, getting closer to the bound on a step size ∝ 1/L guaranteeing the compensation of
variance, become inefficient.

Further, we focus on the behaviour of Scaled L-SVRG algorithm in dependence on the choice
of βt ≡ β, for varying A. We consider the case of constant β to validate the results obtained in
“One-step effects” section.

Figure 10 summarizes the results of Scaled L-SVRG runs with β ∈ {0.95, 0.95+1−0.95
20 , ..., 1}.

Horizontal axis measures value of β, vertical axis measures objective function value f(xT) (or
squared norm of the gradient ∥∇f(xT)∥2) after T = 300 iterations of the algorithm. Curves show
the average value of quantity measures in 5 runs with random sequences of batches and are equipped
with shades of the size of standard deviation of measurements. It can be seen that dependence of
achieved precision on β changes with increasing of smoothness characteristic A: minimum of the
corresponding function is getting closer to β = 1, its values on the left from minimum are growing
and its growth rate near β = 1 is significantly increasing (which is especially noticeable for A = 50).
This relationship between β and L (through A) reflects the trade-off between variance compensation
and scaling gradients Lipschitz constant. Variance affects the convergence if β is small (this fact also
leads to divergence for too small β’s); increasing of L leads to the increasing of δ+t , which increases

13

EFFECTS OF MOMENTUM SCALING FOR SGD

the accumulating error term in (2), so, values for the small β’s grow. To explain the behaviour near
β = 1, it is reasonable to go to A = 0.1 case, where variance error terms are insignificant. Values
begin to grow rapidly starting from β ≈ 0.97 and stop on some fixed value at β = 1. This behaviour
is described in (1), where we have shown the O(1/(1− β)) growth of gradients Lipschitz constant.
The boundedness at β = 1 can be explained by the proper choice of P0, such that δ−t ̸= 1, even if
β = 1. Thus, the main outline of our theory is successfully confirmed on the experiment.

0 100 200 300 400 500
t, iteration

10 40

10 35

10 30

10 25

10 20

10 15

10 10

10 5

100

(
f(x

t))

a9a, A = 0.01

Scaled L-SVRG,
= 3.12e 02,
= 9.84e 01

f(xt)P 1
t

f(xt)

0 100 200 300 400 500
t, iteration

10 35

10 30

10 25

10 20

10 15

10 10

10 5

100

105

(
f(x

t))

a9a, A = 100

Scaled L-SVRG,
= 3.12e 02,
= 9.96e 01

f(xt)P 1
t

f(xt)

0 100 200 300 400 500
t, iteration

10 35

10 30

10 25

10 20

10 15

10 10

10 5

100

105

(
f(x

t))

a9a, A = 0.01, non-diagonal

Scaled L-SVRG,
= 3.12e 02,
= 9.84e 01

f(xt)P 1
t

f(xt)

0 100 200 300 400 500
t, iteration

10 35

10 30

10 25

10 20

10 15

10 10

10 5

100

105
(

f(x
t))

a9a, A = 100, non-diagonal

Scaled L-SVRG,
= 3.12e 02,
= 9.96e 01

f(xt)P 1
t

f(xt)

Figure 4: Dependence of spectrum of Hessian and ∇2f(xt)P
−1
t (characterized by ∆t) on number

of iterations, for diagonal and non-diagonal preconditioning.

Next part of the experiments is about the patterns in preconditioners and related inexactnesses
changing, and corresponding effect on the convergence of Scaled L-SVRG algorithm. Firstly,
we consider the dynamic of the spectrum of Hessian and scaled Hessian, that is ∇2f(xt)P

−1
t , with

increasing number of iterations. The main inexactness ∆t upper bounds the largest eigenvalue of
the scaled Hessian (minus one), and we do not present curve for ∆t, because one can estimate it up
to the order with the unaided eye. This is a first time we consider non-diagonal preconditioning in
our experiments; such an update is defined by dt = |∇2fBt(xt)|ϵ, with the same Bt and ϵ, which
now requires singular value decomposition of ∇2fBt(xt) at the every iteration. Strictly speaking,
our theory is not well-suited to this case, but this practical consideration will give us an additional
information about behaviour of the algorithm when the smallest and other eigenvalues are scaled in a
proper way.

Figure 4 presents the dynamic of Hessian and scaled Hessian spectrum in two scenarios: diagonal
and non-diagonal, for A ∈ {0.01, 100}, which is needed to represent both A < 1 and A > 1
cases. What we see is that the largest eigenvalue of scaled Hessian converges to 1, which means
its increasing in comparison to the largest eigenvalue of Hessian in the case of A < 1 and its
decreasing — in the case of A > 1. For the problem we consider, all the eigenvalues of the (scaled)
Hessian form two clouds of points of the plot, and whilst the upper cloud is shifted so that the largest

14

EFFECTS OF MOMENTUM SCALING FOR SGD

eigenvalue tends to 1, relative position of lower cloud depends on the update type. If we use a
diagonal update, lower cloud is shifted in the same direction as the upper one (all the eigenvalues
increase or decrease at the same time in the case of A < 1 or A > 1, correspondingly), which
leads to the moving of the smallest eigenvalue of the scaled Hessian away from 1. It worth to note
that diagonal update do not pay enough attention to small eigenvalues that can be seen also from
Figure 11. Conversely, if we use non-diagonal update, clouds can be shifted in opposite directions
such that both the largest and the smallest eigenvalues of the scaled Hessian converge to 1.

The following Figure 5 show the results of the experiments, similar to ones described for Figure 3
before, that is, present the dependencies of optimal β∗ on smoothness characteristic A and number of
iterations T , but for non-diagonal preconditioner. In comparison with analogous dependencies for
diagonal updates, optimal β∗ for non-diagonal updates are significantly less sensitive to the change
of A and T . In particular, dependence of β∗ on A in non-diagonal case is closer to linear (because it
is closer to exponential in logarithmic scale for A), so the previous remark on sensitivity of β∗ to the
change of A ≪ 1 ceases to be relevant. Similarly, the growth of β∗ with increasing t is significantly
slower than in diagonal case and is also less monotonic. Taking into account the range of β values on
both figures, one can say that β∗ = (0.965± 0.005) independently on smoothness of the problem
and the number of iterations. Thus, our hypothesis is that the faster the smallest eigenvalue (together
with the largest one) of the scaled Hessian tends to 1 with increasing number of iterations, the less
dependent optimal β∗ is on the smoothness and number of iterations, which means in the extreme
case that optimal β∗ is determined by some affine-invariant characteristic of the function. Note that
such a β∗ can be greater than β∗ obtained for diagonal updates (cf. Figure 3).

10 2 10 1 100

A

0.960

0.962

0.964

0.966

0.968

0.970

*

a9a, non-diagonal

0 50 100 150 200 250 300
t, iteration

0.960

0.965

0.970

0.975

0.980

0.985

0.990

0.995

*

a9a, non-diagonal

Figure 5: Dependencies of optimal βt ≡ β for non-diagonal preconditioning.

The last group of experiments is related to the version of Scaled L-SVRG with the step sizes
chosen with line-search. We use Brent algorithm which searches for ηt ∈ [0, 1] with minimal value
of the f(xt − ηtP

−1
t gt) by only function evaluations. This could be non-practical, if calculation

of all the objective function’s terms is computationally expensive, but in the case when the most
expensive operation is evaluation of the gradient it is acceptable. Besides, our interest to Scaled
L-SVRG with line-search is more theoretical — namely, by this modification we would like to reach
the advantage of scaling introduced by averaging of the smoothness constants. Indeed, in previous
experiments the step size was fixed, such that Lipschitz constant of the gradient was included in
convergence rate as a true constant — scaled, but not better than by fixed preconditioner. Here,
on the contrary, algorithm exploits scaling as much as possible. So, we compare the performance
of algorithms with or without line-search to assess this advantage, and show the dependence of
performance on β.

15

EFFECTS OF MOMENTUM SCALING FOR SGD

0 100 200 300 400 500 600
t, iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

f(x
t)

a9a, A = 5
Scaled L-SVRG (ls), = 9.84e 01
L-SVRG, = 6.25e 02
L-SVRG (ls)

0 200 400 600 800 1000 1200
t, iteration

10 7

10 5

10 3

10 1

101

||
f(x

t)|
|2

a9a, A = 5
Scaled L-SVRG (ls), = 9.84e 01
L-SVRG, = 6.25e 02
L-SVRG (ls)

Figure 6: Convergence curves of L-SVRG, L-SVRG with line-search and Scaled L-SVRG with
line-search with optimal choice of βt ≡ β and ηt ∈ [0, 1].

On the Figure 6, we compare L-SVRG, L-SVRG with line-search (with the aim of fair compar-
ison) and Scaled L-SVRG with line-search. Firstly, precision obtained by the algorithms with
line-search is much better. At the same time, performance of L-SVRG with line-search and Scaled
L-SVRG with line-search is almost the same until 200 iterations, and advantage of scaling comes
clear with increasing of number of iterations and improving the preconditioner (see Figure 4). It is
natural: the average of smoothness constants decreases with adapting of the preconditioner.

0.95 0.96 0.97 0.98 0.99 1.00

0.35

0.40

0.45

0.50

0.55

f(x
t)

a9a, A = 0.1
Scaled L-SVRG (ls), T = 325

* = 9.52e 01

0.95 0.96 0.97 0.98 0.99 1.00
10 9

10 8

10 7

10 6

10 5

10 4

||
f(x

t)|
|2

a9a, A = 0.1
Scaled L-SVRG (ls), T = 325

* = 9.50e 01

0.960 0.965 0.970 0.975 0.980 0.985 0.990 0.995 1.000
0.323

0.324

0.325

0.326

0.327

0.328

0.329

f(x
t)

a9a, A = 10
Scaled L-SVRG (ls), T = 325

* = 9.72e 01

0.960 0.965 0.970 0.975 0.980 0.985 0.990 0.995 1.000

10 4

||
f(x

t)|
|2

a9a, A = 10
Scaled L-SVRG (ls), T = 325

* = 9.68e 01

Figure 7: Dependence of achieved precision on βt ≡ β with line-search.

Then, we reproduce the comparison of the Scaled L-SVRG operation in dependence on β.
The results are shown on the Figure 7 (cf. Figure 10). Summarizing the differences, small β values
became acceptable even for big values of A, so that preconditioner can adapt faster without sacrificing
convergence rate. This is a little unexpected, because the convergence slowdown for small β values is
explained primarily by the variance introduced by changing preconditioner, and the use of line-search
does not relieve us of this factor. For now, we cannot explain this effect with certainty.

16

EFFECTS OF MOMENTUM SCALING FOR SGD

Appendix D. Omitted figures

D.1. Experiments for LibSVM a9a dataset

0 100 200 300 400 500 600
t, iteration

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

f(x
t)

a9a, A = 0.1

Scaled L-SVRG, = 9.84e 01, = 1.25e 01
L-SVRG, = 6.25e 02

0 200 400 600 800 1000 1200
t, iteration

10 9

10 8

10 7

10 6

10 5

10 4

10 3

||
f(x

t)|
|2

a9a, A = 0.1

Scaled L-SVRG, = 9.84e 01, = 1.25e 01
L-SVRG, = 6.25e 02

0 200 400 600 800 1000 1200
t, iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

f1
-s

co
re

a9a, A = 0.1

Scaled L-SVRG, = 9.84e 01, = 1.25e 01
L-SVRG, = 6.25e 02

0 100 200 300 400 500 600
t, iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

f(x
t)

a9a, A = 5
Scaled L-SVRG, = 9.84e 01, = 6.25e 02
L-SVRG, = 6.25e 02

0 200 400 600 800 1000 1200
t, iteration

10 6

10 5

10 4

10 3

10 2

10 1

100

||
f(x

t)|
|2

a9a, A = 5
Scaled L-SVRG, = 9.84e 01, = 6.25e 02
L-SVRG, = 6.25e 02

0 200 400 600 800 1000 1200
t, iteration

0.45

0.50

0.55

0.60

0.65

f1
-s

co
re

a9a, A = 5

Scaled L-SVRG, = 9.84e 01, = 6.25e 02
L-SVRG, = 6.25e 02

0 100 200 300 400 500 600
t, iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

f(x
t)

a9a, A = 10
Scaled L-SVRG, = 9.84e 01, = 6.25e 02
L-SVRG, = 6.25e 02

0 200 400 600 800 1000 1200
t, iteration

10 6

10 5

10 4

10 3

10 2

10 1

100

101

||
f(x

t)|
|2

a9a, A = 10
Scaled L-SVRG, = 9.92e 01, = 1.25e 01
L-SVRG, = 6.25e 02

0 200 400 600 800 1000 1200
t, iteration

0.45

0.50

0.55

0.60

0.65

f1
-s

co
re

a9a, A = 10

Scaled L-SVRG, = 9.92e 01, = 1.25e 01
L-SVRG, = 6.25e 02

0 100 200 300 400 500 600
t, iteration

0.5

1.0

1.5

2.0

2.5

3.0

3.5

f(x
t)

a9a, A = 50
Scaled L-SVRG, = 9.98e 01, = 3.12e 02
L-SVRG, = 1.95e 03

0 200 400 600 800 1000 1200
t, iteration

10 4

10 3

10 2

10 1

100

101

102

103

||
f(x

t)|
|2

a9a, A = 50
Scaled L-SVRG, = 9.98e 01, = 3.12e 02
L-SVRG, = 1.95e 03

0 200 400 600 800 1000 1200
t, iteration

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

f1
-s

co
re

a9a, A = 50

Scaled L-SVRG, = 9.98e 01, = 3.12e 02
L-SVRG, = 1.95e 03

Figure 8: Convergence curves of L-SVRG and Scaled L-SVRG with optimal choice of βt ≡ β
and ηt ≡ η.

17

EFFECTS OF MOMENTUM SCALING FOR SGD

0 100 200 300 400 500 600
t, iteration

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

f(x
t)

a9a, A = 0.1

Scaled L-SVRG, = 9.84e 01
= 6.25e 02
= 3.12e 02
= 1.56e 02
= 7.81e 03
= 3.91e 03
= 1.95e 03
= 9.77e 04

0 100 200 300 400 500 600
t, iteration

10 6

10 5

10 4

10 3

||
f(x

t)|
|2

a9a, A = 0.1

Scaled L-SVRG, = 9.84e 01
= 6.25e 02
= 3.12e 02
= 1.56e 02
= 7.81e 03
= 3.91e 03
= 1.95e 03
= 9.77e 04

0 100 200 300 400 500 600
t, iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

f(x
t)

a9a, A = 5
Scaled L-SVRG, = 9.84e 01

= 6.25e 02
= 3.12e 02
= 1.56e 02
= 7.81e 03
= 3.91e 03
= 1.95e 03
= 9.77e 04

0 100 200 300 400 500 600
t, iteration

10 5

10 4

10 3

10 2

10 1

100

||
f(x

t)|
|2

a9a, A = 5

Scaled L-SVRG, = 9.84e 01
= 6.25e 02
= 3.12e 02
= 1.56e 02
= 7.81e 03
= 3.91e 03
= 1.95e 03
= 9.77e 04

0 100 200 300 400 500 600
t, iteration

0.3

0.4

0.5

0.6

0.7

0.8

f(x
t)

a9a, A = 10
Scaled L-SVRG, = 9.92e 01

= 6.25e 02
= 3.12e 02
= 1.56e 02
= 7.81e 03
= 3.91e 03
= 1.95e 03
= 9.77e 04

0 100 200 300 400 500 600
t, iteration

10 5

10 4

10 3

10 2

10 1

100

101

||
f(x

t)|
|2

a9a, A = 10

Scaled L-SVRG, = 9.92e 01
= 6.25e 02
= 3.12e 02
= 1.56e 02
= 7.81e 03
= 3.91e 03
= 1.95e 03
= 9.77e 04

0 100 200 300 400 500 600
t, iteration

0.5

1.0

1.5

2.0

2.5

3.0

3.5

f(x
t)

a9a, A = 50
Scaled L-SVRG, = 9.98e 01

= 6.25e 02
= 3.12e 02
= 1.56e 02
= 7.81e 03
= 3.91e 03
= 1.95e 03
= 9.77e 04

0 100 200 300 400 500 600
t, iteration

10 2

10 1

100

101

102

103

||
f(x

t)|
|2

a9a, A = 50
Scaled L-SVRG, = 9.98e 01

= 6.25e 02
= 3.12e 02
= 1.56e 02
= 7.81e 03
= 3.91e 03
= 1.95e 03
= 9.77e 04

Figure 9: Convergence curves of Scaled L-SVRG with different step sizes on logistic regression
problems with different Lipschitz constants.

0.95 0.96 0.97 0.98 0.99 1.00

0.35

0.40

0.45

0.50

0.55

0.60

f(x
t)

a9a, A = 0.1
Scaled L-SVRG, = 1.25e 01, T = 300

* = 9.50e 01

0.95 0.96 0.97 0.98 0.99 1.00

10 7

10 6

10 5

10 4

10 3

||
f(x

t)|
|2

a9a, A = 0.1
Scaled L-SVRG, = 1.25e 01, T = 650

* = 9.52e 01

0.960 0.965 0.970 0.975 0.980 0.985 0.990 0.995 1.000
0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39
f(x

t)

a9a, A = 5
Scaled L-SVRG, = 6.25e 02, T = 300

* = 9.70e 01

0.960 0.965 0.970 0.975 0.980 0.985 0.990 0.995 1.000

10 4

||
f(x

t)|
|2

a9a, A = 5
Scaled L-SVRG, = 6.25e 02, T = 650

* = 9.60e 01

0.970 0.975 0.980 0.985 0.990 0.995 1.000

0.3225

0.3250

0.3275

0.3300

0.3325

0.3350

0.3375

0.3400

0.3425

f(x
t)

a9a, A = 10
Scaled L-SVRG, = 6.25e 02, T = 300

* = 9.75e 01

0.970 0.975 0.980 0.985 0.990 0.995 1.000

10 4

||
f(x

t)|
|2

a9a, A = 10
Scaled L-SVRG, = 6.25e 02, T = 650

* = 9.78e 01

0.975 0.980 0.985 0.990 0.995 1.0000.320

0.325

0.330

0.335

0.340

0.345

0.350

0.355

0.360

f(x
t)

a9a, A = 50
Scaled L-SVRG, = 3.12e 02, T = 300

* = 9.98e 01

0.975 0.980 0.985 0.990 0.995 1.000

10 2

10 1

100

101

102

||
f(x

t)|
|2

a9a, A = 50
Scaled L-SVRG, = 3.12e 02, T = 650

* = 9.98e 01

Figure 10: Dependence of achieved precision on βt ≡ β. (Note: on the lower left plot, function
value at β = 1 is too big, so we cropped the picture, that is why the curve is almost
vertical there)

0 20 40 60 80 100 120
i

10 1

100

101

102

(i)
(

f(x
T))

a9a, A = 50
Scaled L-SVRG,

= 3.12e 02,
= 9.92e 01

T = 0
T = 100
T = 200
T = 300
T = 400
T = 500

0 20 40 60 80 100 120
i

100

101

102

(i)
(

f(x
T))

a9a, A = 50
Scaled L-SVRG,

= 3.12e 02,
= 9.98e 01

T = 0
T = 100
T = 200
T = 300
T = 400
T = 500

Figure 11: Dependence of spectrum of Hessian approximation on number of iterations.

18

EFFECTS OF MOMENTUM SCALING FOR SGD

D.2. Experiments for LibSVM covtype-binary-scaled dataset

0.88 0.90 0.92 0.94 0.96 0.98 1.00

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

f(x
t)

covtype, A = 0.1
Scaled L-SVRG, = 2.50e 01, T = 300

* = 8.97e 01

0.88 0.90 0.92 0.94 0.96 0.98 1.00

10 7

10 6

10 5

||
f(x

t)|
|2

covtype, A = 0.1
Scaled L-SVRG, = 2.50e 01, T = 300

* = 8.97e 01

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.56

0.58

0.60

0.62

0.64

0.66

0.68

f(x
t)

covtype, A = 0.1
Scaled L-SVRG, = 1.25e 02, T = 300

* = 4.34e 01

0.4 0.5 0.6 0.7 0.8 0.9 1.010 7

10 6

10 5

||
f(x

t)|
|2

covtype, A = 0.1
Scaled L-SVRG, = 1.25e 02, T = 300

* = 4.34e 01

Figure 12: Dependence of achieved precision on βt ≡ β, A = 0.1. (Note: gaps in curves mean the
divergence of the algorithm in at least one of 3 runs)

0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.550

0.555

0.560

0.565

0.570

f(x
t)

covtype, A = 10
Scaled L-SVRG, = 1.25e 01, T = 300

* = 7.24e 01

0.70 0.75 0.80 0.85 0.90 0.95 1.00
2 × 10 4

3 × 10 4

4 × 10 4

||
f(x

t)|
|2

covtype, A = 10
Scaled L-SVRG, = 1.25e 01, T = 300

* = 7.24e 01

0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.565

0.570

0.575

0.580

0.585

0.590

0.595

f(x
t)

covtype, A = 10
Scaled L-SVRG, = 1.25e 02, T = 300

* = 5.89e 01

0.4 0.5 0.6 0.7 0.8 0.9 1.0

10 2

6 × 10 3

2 × 10 2

||
f(x

t)|
|2

covtype, A = 10
Scaled L-SVRG, = 1.25e 02, T = 300

* = 5.54e 01

Figure 13: Dependence of achieved precision on βt ≡ β, A = 10. (Note: gaps in curves mean the
divergence of the algorithm in at least one of 3 runs)

0 100 200 300 400 500
t, iteration

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

f(x
t)

covtype, A = 0.1

Scaled L-SVRG, = 8.50e 01, = 2.50e 01
L-SVRG, = 1.60e + 01

0 100 200 300 400 500
t, iteration

10 8

10 7

10 6

10 5

||
f(x

t)|
|2

covtype, A = 0.1

Scaled L-SVRG, = 8.50e 01, = 2.50e 01
L-SVRG, = 1.60e + 01

0 100 200 300 400 500
t, iteration

0.550

0.575

0.600

0.625

0.650

0.675

0.700

0.725

f1
-s

co
re

covtype, A = 0.1

Scaled L-SVRG, = 8.50e 01, = 2.50e 01
L-SVRG, = 1.60e + 01

0 100 200 300 400 500
t, iteration

0.6

0.8

1.0

1.2

1.4

1.6

f(x
t)

covtype, A = 10
Scaled L-SVRG, = 9.84e 01, = 1.25e 01
L-SVRG, = 3.12e 02

0 100 200 300 400 500
t, iteration

10 3

10 2

10 1

100

101

||
f(x

t)|
|2

covtype, A = 10

Scaled L-SVRG, = 9.84e 01, = 1.25e 01
L-SVRG, = 3.12e 02

0 100 200 300 400 500
t, iteration

0.550

0.575

0.600

0.625

0.650

0.675

0.700

0.725

0.750

f1
-s

co
re

covtype, A = 10

Scaled L-SVRG, = 9.84e 01, = 1.25e 01
L-SVRG, = 3.12e 02

Figure 14: Convergence curves of L-SVRG and Scaled L-SVRG with optimal choice of βt ≡ β
and ηt ≡ η.

19

	Literature review
	One-step effects
	Cumulative effects
	Synthesis
	Observed effects
	Additional theory
	Omitted proofs
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Theorem 5
	Proof of Theorem 6
	Proof of Theorem 7

	Supplementary numerical experiments
	Omitted figures
	Experiments for LibSVM a9a dataset
	Experiments for LibSVM covtype-binary-scaled dataset

