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Abstract
Gradient Boosted Decision Trees (GBDTs) are dominant machine learning algorithms for modeling
discrete or tabular data. Unlike neural networks with millions of trainable parameters, GBDTs
optimize loss function in an additive manner and have a single trainable parameter per leaf, which
makes it easy to apply high-order optimization of the loss function. In this paper, we introduce
high-order optimization for GBDTs based on numerical optimization theory which allows us to
construct trees based on high-order derivatives of a given loss function. In the experiments, we show
that high-order optimization has faster per-iteration convergence that leads to reduced running time.
Our solution can be easily parallelized and run on GPUs with little overhead on the code. Finally,
we discuss future potential improvements such as automatic differentiation of arbitrary loss function
and combination of GBDTs with neural networks.

1. Introduction

Gradient boosted decision trees (GBDT) [10] are state-of-the-art ML models for tabular datasets.
Many variants of GBDTs have been proposed in the recent years that achieve top performance
in classification [15, 24], regression [7, 18], and ranking [14, 27] tasks with applications where
data often contain missing or noisy features, complex relationships, and heterogeneity such as in
recommender systems, information retrieval, and many others [8, 17, 20, 23, 28].

Let’s consider a dataset D = {(xi, yi) |i ∈ {1, ..., n}}, where xi ∈ Rm and yi ∈ R. A GBDT
model is a sum of K additive functions, each of which represents a decision tree:

ŷi = ϕ(xi) =
K∑
k=1

fk(xi), fk ∈ F , (1)

where F = {f(x) = wq(x)}(q : Rm → T,w ∈ RT ) is a space of regression trees. Each regression
tree fk maps m-dimensional feature vector x to one of its leaves (or regions) with index q(x) that
has a corresponding weight value wq(x).

One of the most important differences between GBDT models and other tree-based models such
as Random Forest [5] or Extremely Randomized Trees [12] is that GBDT model learns the trees in
an iterative fashion by adding a new tree with respect to the performance of previous trees, while the
latter models grow trees independently from each other. In particular, in GBDT the loss objective
L(t) at every iteration t and regularization term Ω is minimized by adding a new tree ft:

L(t) =
n∑

i=1

l(yi, ŷi
(t−1) + ft(xi)) + Ω(ft) (2)
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The regularization term Ω often penalizes the complexity of the tree function and we consider it
to be Ω(ft) =

1
2λ∥w∥

2, where λ is a hyperparameter.
In the seminal paper [11] Friedman proposed to learn new trees such that they produce the

steepest-descent step direction given by the first-order gradient of the loss function with respect to
the last prediction of the model:

ft = −∂ŷ(t−1) l(yi, ŷ
(t−1)) (3)

Thus, each new tree gets an updated version of the data {(xi, ỹi) |i ∈ {1, ..., n}}, where ỹi =
∂ŷ(t−1) l(yi, ŷ

(t−1)) is a “pseudoresponse” that the tree is fitting.
More than a decade after Chen and Guestrin proposed XGBoost [9] that popularized second-

order optimization of gradient boosting. Instead of fitting the first-order gradient, each new tree
decomposes the loss function using second-order approximation and derives the closed-form formulas
for assigning the leaf weights and building a regression tree.

Let g(k)i be the k-th order derivative of the loss function with respect to the last model’s prediction
ŷ(t−1), i.e. g(k)i = ∂k

ŷ(t−1) l(yi, ŷ
(t−1)). Then the Eq. 2 can be approximated by second-order Taylor

expansion:

L(t) ≃
n∑

i=1

[l(yi, ŷ
(t−1)) + g

(1)
i ft(xi) +

1

2
g
(2)
i f2

t (xi)] + Ω(ft) (4)

Let’s first assume that the tree structure is given to us and we want to find the leaf weights that
minimize the Eq. 4. Let Ij = {i|q(xi) = j} be a set of all data instances that fall into the leaf j.
Then, removing the term that does not depend on the tree ft and regrouping the data for each leaf we
obtain:

L̃(t) =
n∑

i=1

[g
(1)
i ft(xi) +

1

2
g
(2)
i f2

t (xi)] +
1

2
λ

T∑
j=1

w2
j

=
T∑

j=1

[(
∑
i∈Ij

g
(1)
i )wj +

1

2
(
∑
i∈Ij

g
(2)
i + λ)w2

j ]

(5)

For each leaf j let’s denote G(k)
j =

∑
i∈Ij g

(k)
i be the sum of k-th order gradients of data instances

that fall into that leaf. Then the minimum of Eq. 5 for each leaf j is given by

w∗
j = −

G
(1)
j

G
(2)
j + λ

, (6)

and by plugging it back to Eq.5 we get the optimal loss value:

L∗j = −
1

2

T∑
j=1

[G
(1)
j ]2

G
(2)
j + λ

. (7)

To date, the power of second-order GBDT models [9, 19, 22, 25, 26] has been demonstrated
across a range of tasks and baselines including modern neural networks [3, 13]. However, to the best

2



HIGH-ORDER OPTIMIZATION OF GRADIENT BOOSTED DECISION TREES

of our knowledge, there are no works that study high-order gradient information of the loss function
during optimization. In this work, we consider a high-order Taylor expansion of the loss function
(Eq. 2) and derive closed-form formulas for arbitrary order gradient statistics and compare the results
of these higher-order methods in the experiments.

2. High-Order Optimization of GBDT

We start by noting that XGboost decomposition of the loss function Eq. 4 provides two advantages.
First, it allows us to derive optimal leaf weights for arbitrary differentiable loss functions. Second, the
closed-form Eq. 6 provides a greedy algorithm to construct a tree. However, the second-order Taylor
approximation may lead to inaccurate estimation of the loss function and therefore longer convergence.
Next, we show an example of the optimal leaf weights that use third-order approximation, which is
followed by the general k-th order methods.

2.1. Cubic Optimization of GBDT

Let’s start with a third-order Taylor expansion of the loss Eq. 2 (after removing constant terms):

L̃(t) =
T∑

j=1

[G
(1)
j wj +

1

2
(G

(2)
j + λ)w2

j +
1

6
G

(3)
j w3

j ] (8)

Here G
(k)
j =

∑
i∈Ij g

(k)
i be the sum of k-th order gradients of data instances in the leaf j. By

equating the derivative to zero, we can find the optimal weights wj for each leaf j:

w∗
j = −

G
(2)
j + λ

G
(3)
j

1±

√√√√1−
2G

(1)
j G

(3)
j

(G
(2)
j + λ)2

 (9)

Note that at the minimum the first-order gradients G(1)
j are zero and therefore for a small enough∑

i∈Ij g
(1)
i we can use an expansion 1−

√
1− α = α

2 + α2

8 +O(α3) to simplify the terms of this
equation . The optimal weights become:

w∗
j = −

G
(1)
j

G
(2)
j + λ

(
1 +

G
(1)
j G

(3)
j

2(G
(2)
j + λ)2

)
(10)

By plugging the weights back into the Eq. 8 we can compute the optimal loss value:

L∗j = −
[G

(1)
j ]2

G
(2)
j + λ

(
1

2
+

1

6
ε+ 2ε3 +

2

3
ε4) (11)

Here, ε =
G

(1)
j G

(3)
j

G
(2)
j + λ

. By comparing it to the Eq. 7 we can observe additional terms in Eq. 11

which correct the loss value estimation. Similarly, to XGBoost approach we can design an efficient
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greedy algorithm (Alg. 1) that estimate the goodness of each split by computing the loss reduction
score Lsplit = Lnode–(Lleft + Lright) and then selecting the split with the maximum score. To
make it efficient, the algorithm first sorts the data on that node based on the feature values and then
computes the loss based on the Eq. 11. Similar algorithms can be designed for arbitrary order k.

2.2. Householder Optimization of GBDT

Recap that the GBDT model is an additive process of adding new trees, each of which approximates
some function of the loss objective ϕ(x) ← ϕ(x) + ft(x). In the case of Friedman’s first-order
method ft(x) approximates the gradient Eq. 3. In the second and third-order methods, each tree
ft(x) approximates functions that involve higher-order gradient statistics, given by Eqs. 6 and 9.
Furthermore, under some conditions of the regularity of the loss function, Householder [16] gave the
general formula for arbitrary high order:

ϕ(x)← ϕ(x) + (p+ 1)

(
(1/g)(p)

(1/g)(p+1)

)
xn

, (12)

where g is the gradient of the loss function and (1/g)(p) is the derivative of order p of inverse of
g. The convergence has an order (p+ 2). For example, for p = 0 Eq. 12 results in Newton-Raphson
update of XGBoost (Eq. 6). For p = 1, Householder equation gives an update of order 3, also known
as Halley’s method [4]:

w∗
j = −

G
(1)
j

G
(2)
j + λ

(
1−

G
(1)
j G

(3)
j

2(G
(2)
j + λ)2

)−1

(13)

Given the approximation (1− α)−1 = 1 + α+O(α2) for small α, we can recover third-order
update in Eq. 9. Finally, for p = 2 we obtain the following fourth-order update:

w∗
j =−G

(1)
j

(
(G

(2)
j + λ)2 −G

(1)
j G

(3)
j /2

(G
(2)
j + λ)3 −G

(1)
j (G

(2)
j + λ)G

(3)
j +G

(1)
j G

(4)
j /6

)
. (14)

3. Experiments

In the experiments, we use Eqs. 6, 13, 14 for the second, third, and fourth-order models respectively.
Our implementation is based on the open-source package Py-Boost 1. We used four binary classifi-
cation datasets [13] for which we optimize binary cross-entropy loss. For each dataset, we use the
validation part to select the best hyperparameters and use the test part to measure the accuracy. To
compare models’ efficiency we first trained the second-order model (GBDT-2) for 10000 trees and
then recorded the best test accuracy it achieves. Then for each model, we measured the running
time it takes to reach 99% of the best accuracy so that the small perturbations in the loss value can
be discarded. The training was performed on GPU, with 120GB memory, 7.8Gbps, and 2 GPUs.
We kept the maximum depth of 6 for trees. In contrary to second order, higher order GBDTs are

1. https://github.com/jpachebat/py boost
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Figure 1: Test accuracy for high-order GBDT models.

more sensitive to regularization factor λ, which we selected using hyperparameter search in the range
[100, . . . , 106].

Convergence of validation accuracy is presented in the Fig. 1. We can see that the third (GBDT-3)
and fourth (GBDT-4) methods have much faster convergence initially. However, as we train longer,
the accuracy of GBDT-2 becomes comparable to those of the higher-order methods (see Appendix B).
On the other hand, the running time to reach 99% optimal accuracy for higher-order is significantly
smaller as shown in Table 1. For example, on Epsilon dataset the relative difference (Gap) between
GBDT-2 model and GBDT-3 model is 73%.

Table 1: Running time to achieve 99% of the optimal test accuracy for high-order GBDT models.
Gap % is the relative difference w.r.t. GBDT-2 accuracy (the smaller, the better).

Higgs Epsilon Covertype MiniBooNE
Dataset Time (s.) Gap % Time (s.) Gap % Time (s.) Gap % Time (s.) Gap %

GBDT-2 8.98 ± 0.01 0 94.80 ± 0.01 0 32.08 ± 0.01 0 1.35 ± 0.01 0

O
ur

s GBDT-3 4.93 ± 0.00 -45 25.00 ± 0.01 -73 18.46 ± 0.00 -42 0.59 ± 0.01 -56
GBDT-4 4.7 ± 0.1 -47 29.17 ± 0.01 -69 23.09 ± 0.00 -28 0.48 ± 0.01 -64

4. Conclusion

In this work, we proposed a high-order optimization framework to learn GBDT model, which has not
been explored in the context of gradient boosting and may lead to many improvements to the existing
GBDT algorithms: faster convergence, automatic regularization of the step size, and better optima.
There are many exciting future directions for this research. Our framework is developed for arbitrary
differentiable loss objectives; however, the user still has to provide manually-derived gradients in
order to compute the optimal weights. Recent interest in automatic and symbolic differentiation [2]
can come to the rescue, especially in the case when the loss objective is highly non-linear and the
optimization order p is high. Note, however, that automatic differentiation additionally increases
the running time so there is a trade-off between the efficiency of higher-order optimization and its
versatility. Going one step further, we can implement a GBDT model directly in popular frameworks
such as PyTorch [21] or TensorFlow [1] and leverage automatic differentiation, GPU acceleration,
distributed training, and many other features (see [25] for an example). Finally, training GBDT
model with neural networks in an end-to-end fashion has recently attracted attention [6, 18] and is
worth studying in the context of high-order optimization.
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Appendix A. Third-Order Split Selection Algorithm

Algorithm 1 Selecting optimal split for a tree node
Input: I , instances of the node
score← 0
G(i) ←

∑
i∈I g

(1)
i , G(2) ←

∑
i∈I g

(2)
i , G(3) ←

∑
i∈I g

(3)
i

for k = 1 to m do
G

(i)
left ← 0 for i = 1, 2, 3

for j in sorted(I , by xjk) do
G

(i)
left ← Gleft + g

(i)
j for i = 1, 2, 3

G
(i)
right ← G(i) −G

(i)
left for i = 1, 2, 3

Compute Lnode, Lleft, Lright Eq. 11

score← max(score,Lnode–(Lleft + Lright))

end
end
Output: Split with max score

Appendix B. Full traning curves
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Figure 2: Test accuracy for high-order GBDT models (full training curves).
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