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Abstract
Gradient preconditioning is a key technique to integrate the second-order information into gradi-
ents for improving and extending gradient-based learning algorithms. In deep learning, stochastic-
ity, nonconvexity, and high dimensionality lead to a wide variety of gradient preconditioning meth-
ods, with implementation complexity and inconsistent performance and feasibility. We propose the
Automatic Second-order Differentiation Library (ASDL), an extension library for PyTorch, which
offers various implementations and a plug-and-play unified interface for gradient preconditioning.
ASDL enables the study and structured comparison of a range of gradient preconditioning methods.

1. Introduction

Gradient preconditioning is a key technique for integrating second-order information such as loss
sharpness (second-order derivatives) and gradient covariance/second moment (second-order statis-
tics) into gradients. In deep learning in various domains such as vision [33], language [4, 38],
graph [18], reinforcement learning [19], and quantum computing [43], gradient preconditioning has
been reported to improve and extend gradient-based learning algorithms. The benefits of gradient
preconditioning includes faster convergence of training [3, 29], more robust approximate Bayesian
inference [20, 31, 48], regularization to avoid forgetting in continual learning [22, 35], identifying
influential parameters and examples on model’s output [16, 23], estimation of the mini-batch size
with high data efficiency [30], and generic probabilistic prediction via gradient boosting [9].

To integrate the second-order information into the gradient g, the gradient preconditioning ap-
plies the preconditioning matrix P to get the preconditioned gradient Pg. In deep learning, where
stochasticity, nonconvexity, and high dimensionality are inherent, there are a variety of choices for
(i) the curvature matrices C containing various forms of second-order information (§2.1), (ii) the
representations of C based on the neural network structures and matrix properties (§2.2), and (iii)
the solvers for computing Pg ≈ C−1g (§2.3). This leads to a diverse set of gradient precondition-
ing methods (Figure 1,Table 1), each requiring algorithm-specific and complex implementations,
making it challenging to incorporate them into existing training pipelines that usually use SGD-
based gradient methods today. Furthermore, it is hard to switch between different methods in order
to compare them. This implementation issue is critical because the compute performance, pre-
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Figure 1: Three key components of gradient preconditioning in deep learning

diction accuracy, and feasibility (in terms of budget of time and memory) of methods are highly
dependent on neural network architectures and specific training settings (§4).

To address this, we propose the Automatic Second-order Differentiation Library (ASDL), which
extends PyTorch [37], an automatic-differentiation library, with a unified interface for gradient
preconditioning using various curvature matrices, representations, and solvers (Figure 2) that is
compatible with several types of training pipelines and neural network architectures.

2. Gradient Preconditioning in Deep Learning

Notations The mini-batch empirical loss L(θ) := 1
|B|

∑
(x,t)∈B ℓ(x, t;θ) = ⟨ℓ(x, t;θ)⟩ is the

average of the per-example negative log-likelihood ℓ(x, t;θ) := − log pθ(t|x) =: h(f(x;θ), t) for
each input-target pair (x, t) in a mini-batch B sampled from the training set. θ ∈ RP is the column
vector containing the neural network parameters, ⟨·⟩ represents the average over B, pθ is model’s
predictive distribution, q is input distribution, and f is the neural network with K output neurons,
g := ∇L(θ) ∈ RP is the mini-batch gradient, and Jf (x) ∈ RK×P is the Jacobian of f w.r.t. θ.

2.1. Curvature matrices

Loss sharpness The Hessian H := ∇2L =
〈
∇2ℓ(x, t;θ)

〉
∈ RP×P is the second-order deriva-

tive of L representing the loss sharpness [17], and the Newton direction is Pg = H−1g . The
absolute Hessian H |λ|, which replaces the eigenvalues of H by their absolute values, is preferred
in optimization of a nonconvex L to avoid saddle points [7, 8, 25]. The BFGS method estimates H
(or H−1) with the BFGS Hessian Ĥbfgs (or Ĥbfgs

−1), which is the accumulation of the changes in
g (i.e., changes in the first-order derivatives) and θ during iterative optimization of θ with Pg =
Ĥbfgs

−1g. The (generalized) Gauss-Newton matrix G :=
〈
Jf (x)

⊤∇2
yh(y, t)|y=f(x)Jf (x)

〉
[42],

which ignores the second-order derivative of f w.r.t. θ in H (i.e., views f as linear [13]) and is
positive semi-definite, is also preferred in non-convex optimization [27].

Gradient covariance The Fisher F := Eq(x)

[
Epθ(t′|x)

[
∇ log pθ(t

′|x)∇ log pθ(t
′|x)⊤

]]
∈ RP×P

is the covariance of gradient of log-likelihood ∇ log pθ. F is also the second-order derivative of
the KL-divergence DKL(pθ||pθ+∆θ) and is used as C in the natural gradient descent (NGD) [3]:
Pg = F−1g. In practice, Eq(x)[·] is estimated with ⟨·⟩, and F = G for cross-entropy and MSE
loss [36], connecting the loss sharpness and gradient covariance perspectives in optimization [28].
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Table 1: Representative gradient preconditioning methods in deep learning. “KF”: Kronecker-
factored. “RR”: Rank reduction. “SMW”: Sherman-Morrison-Woodbury formula. Meth-
ods analyzed in this study are underlined. See Table 3 for a more comprehensive list.

Method
Curvature matrix C (§2.1) Representation of C (§2.2) Solver for Pg ≈ C−1g (§2.3)

type matrix granularity format type key operations

Hessian-free [27] sharpness H,G full matrix-free local iterative conjugate gradient
SMW-NG [39] grad 2ndm F̂emp full Gram, RR local direct SMW inverse
PSGD (KF) [25] sharpness H |λ| layer KF global iterative triangular solve, SGD
K-FAC [29] grad cov, 2ndm F̂1mc, F̂emp layer KF local/global direct Cholesky inverse
Shampoo [15] grad 2ndm (F̂ batch

emp )1/2 layer KF global direct eigendecomp.
Adam [21] grad 2ndm (F̂ batch

emp )1/2 element dense global direct element-wise division

Epθ(t′|x)[·] involves K backward passes for ∇ log pθ [6] (e.g., K = 1000 for ImageNet-1K), so F

is often estimated with the MC Fisher F̂nmc with n Monte-Carlo (MC) samples of tmc ∼ pθ(t
′|x).

Gradient second moment The empirical Fisher F̂emp :=
〈
∇ log pθ(t|x)∇ log pθ(t|x)⊤

〉
=〈

∇ℓ(x, t;θ)∇ℓ(x, t;θ)⊤
〉
∈ RP×P is the second moment of per-example empirical gradient. It

can be computed during the backward pass for ∇L and is preferred in large-scale settings [33, 38].
As F̂emp is no longer centered (i.e., ⟨∇ℓ(x, t;θ)⟩ ≠ 0), it is claimed not to capture the useful
second-order information for optimization [? ] while it is empirically observed that NGD with
F̂emp still achieves the fast convergence with smoothed t [34, 38]. Adaptive gradient methods such
as Adam [21] and Shampoo [15] use the batched empirical Fisher F̂ batch

emp (T ) :=
∑T

t=1 αtgtg
⊤
t

(0 ≤ αt ≤ 1, gt is for Bt at t-th training step), an online estimate of the second moment of mini-
batch empirical gradient: PgT = (F̂ batch

emp (T ))−1/2gT . F̂ batch
emp looses the second-order information

when the mini-batch size |B| is large [13], but it is also empirically observed that Shampoo achieves
a faster convergence than first-order optimizers (SGD, LAMB [47]) in large-batch training [4]1.

2.2. Representations of matrices

It is infeasible to materialize C ∈ RP×P and directly invert it (C−1) with the O(P 3) cost for deep
neural networks with a massive number of parameters P (e.g., billions). To make practical use of
(a portion of) the information in C, there are various matrix representations using block-diagonal
approximation, compact format, or both.

Full matrix Typical compact formats for exploiting the full C include matrix-vector products
(matrix-free) (e.g., Hessian-free) and Gram matrices with rank reduction (e.g., SMW-NG).

Layer-/unit-/element-wise block-diagonal matrix Granularity of diagonal blocks are often per
neural network layer, per unit, or per element of θ (i.e., diagonal, e.g., Adam). Kronecker-factored
matrices (e.g., PSGD, K-FAC, Shampoo) is one of the most common formats for layer-wise blocks.

1. See [13] for a more detailed description of these curvature matrices.
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For x, t in data_loader:
optimizer.zero_grad()

# Compute mini-batch gradient g
y = model(x)
loss = F.cross_entorpy(y, t) 
loss.backward()

optimizer.step()

gm = XXXGradientMaker(model, XXXGradientConfig())

dummy_y = gm.setup_model_call(model, x)
gm.setup_loss_call(F.cross_entropy, dummy_y, t)
y, loss = gm.forward_and_backward()

Unified interface to compute preconditioned mini-batch gradient 𝑃𝑔

# K-FAC (1mc) [KfacGradientMaker]
y = model(x)
loss = F.cross_entropy(y, t)
if step % interval == 0:

p = F.softmax(y)
log_p = F.log_softmax(y)
with torch.no_grad():
t_mc = Categorical(p).sample()

nll = F.nll_loss(log_p, t_mc)
nll.backward(retain_graph=True)
upd_curvature_matrix()
upd_precond_matrix()

loss.backward()
precondition()

# SMW-NG [SmwEmpNaturalGradientMaker]
y = model(x)
losses = F.cross_entropy(

y, t, reduction=‘none’)
upd_curvature_matrix()
b = upd_precond_matrix()
g = torch.ones_like(b) - b
batch_loss.backward(gradient=g)
loss = losses.mean() 

# PSGD [PsgdGradientMaker]
y = model(x)
loss = F.cross_entropy(y, t)
if step % interval == 0:

grads = torch.autograd.grad(
loss, params, 
create_graph=True)

vs = [torch.randn_like(p) 
for p in params]

Hvs = torch.autograd.grad(
grads, params,
grad_outputs=vs)

upd_precond_matrix(vs, Hvs)
else:

loss.backward()
precondition()

replaceable

Figure 2: Unified interface for gradient preconditioning in PyTorch. XXXGradientMaker
(“XXX”: algorithm name), offered by ASDL, hides algorithm-specific and complex
operations for Pg in a unified way. For training without gradient preconditioning,
GradientMaker computes g with the same interface (i.e., no need to switch scripts).
For ease of comparison, the color scheme for operations is consistent with Figure 3.

2.3. Solvers for preconditioning gradient

Local vs. global Solvers to compute Pg ≈ C−1g are first classified by the scope of information
captured by C, i.e., local information within one B vs. global information associated with multiple
Bs observed through learning. By definition, solvers with Ĥbfgs or F̂ batch

emp are global solvers.

Iterative vs. direct Solvers are also classified by the type of linear solver for Creprx = g, i.e.,
iterative vs. direct, where Crepr is a certain representation (§2.2) of selected C (§2.1) containing
local or global information. An iterative solver uses the matrix-free format for local while it ma-
terializes Crepr for global. A damping τI (τ > 0) is often added to Crepr to improve numerical
stability and/or guarantee positive definiteness ((Crepr + τI) ≻ 0). This allows a fast direct solver
using Cholesky decomposition (e.g., K-FAC) or SMW formula (e.g., SMW-NG) to be applied.

3. Unified Interface for Gradient Preconditioning in ASDL

Our Automatic Second-order Differentiation Library (ASDL)2 implements gradient precondition-
ing methods listed in Table 1. Figure 2 shows a standard training pipeline in PyTorch with mini-
batch gradients, the (simplified) operations in SMW-NG, PSGD, and K-FAC (with F̂1mc) (see Ap-
pendix A for details), and the unified interface, XXXGradientMaker, which enables an easy
integration of gradient preconditioning by hiding the algorithm-specific and complex operations.
Each method exhibits compute performance, prediction accuracy, and feasibility depending highly
on tasks (§4), so capability to flexibly switch/compare methods is important.

2. https://github.com/kazukiosawa/asdfghjkl
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Figure 3: One-step time and peak memory consumption (left and right bar at each point in each
box, respectively) for MLPs on MNIST. In the bottom row (scaling interval), the
memory is not shown because it is constant. Times are the averages of 100 runs on an
NVIDIA RTX 3090. An MLP has depth layers (784−width−· · ·−width−10) with
ReLU non-linearities. width, depth, mini-batch size (bs), and matrix update interval
(interval) are independently scaled from the base values (width=512, depth=3, bs=32,
interval=1) for each method (except for SMW-NG, which can only take an interval=1).

4. Case Studies with ASDL

Using ASDL, we compare gradient preconditioning methods for optimization, i.e., adaptive gradient
methods (with F̂ batch

emp ) and second-order optimization methods (with other C) in vision tasks.

Time and memory Figure 3 shows the time per step, peak memory consumption, and their break-
down in training MLPs on MNIST [24] using the representative methods summarized in Table 1.
Each method behaves differently with respect to the scaling of the MLP’s width (number of neu-
rons) and depth (number of layers), the mini-batch size (bs), and the matrix update interval
(interval). See Appendix A for a more detailed description of operations in each method.

Neural network training Table 2 shows the training results on MNIST and CIFAR-10 with var-
ious neural network architectures and methods.3 For each task, the mini-batch size, learning rate,
number of epochs, matrix update interval (if applicable), damping τ (if applicable), and number of
power iterations (Shampoo) are tuned with Bayesian optimization under a predefined time budget.4

5. Discussion

By ASDL, we observe that no gradient preconditioning method is always superior (in the sense
of compute performance, prediction accuracy, and feasibility) to another — it is critical to flexibly
switch and compare methods. The extension of this work to distributed and mixed-precision train-
ing, where time and numerical stability bottlenecks change [4, 45], is an important future direction.

3. SMW-NG for ViT-tiny and MLP-Mixer-base, sequence models, are not supported in ASDL yet, but SMW-based
methods are often infeasible because “bs” (in Figure 3) is the number of tokens = mini-batch size × sequence length.

4. See Appendix B for the details of experimental settings.
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Table 2: The test accuracy (and training time) for models achieving the best validation accuracy.
For each task, the best accuracy is bolded and the shortest time is underlined. “w”: width.

Method
MNIST CIFAR-10

MLP (w=128) MLP (w=512) MLP (w=2048) ResNet18 WideResNet ViT-tiny MLP-Mixer-base

SGD 97.94 (48.8s) 98.42 (101.5s) 98.46 (56.4s) 95.85 (33m) 96.97 (178m) 97.81 (15.7m) 96.71 (72m)

SMW-NG (w/o RR) 97.99 (160.2s) 97.74 (48.23s) 98.27 (164.7s) 94.27 (92m) 94.93 (454m) - -
PSGD (KF) 98.05 (42.7s) 98.33 (86.9s) 98.44 (26.5s) 96.07 (44m) 96.99 (276m) 97.95 (28.1m) 97.33 (109m)
K-FAC (1mc) 97.94 (45.4s) 98.42 (98.8s) 98.51 (15.0s) 95.97 (32m) 96.95 (167m) 97.68 (8.0m) 97.14 (70m)
Shampoo 98.13 (739.6s) 98.35 (259.7s) 98.55 (88.9s) 96.38 (275m) 96.74 (113m) 97.93 (39.9m) 96.81 (111m)
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Table 3: Gradient preconditioning methods in deep learning. “KF-io”: input-output Kronecker-
factored. “KF-dim”: dimensition-wise Kronecker-factored. “RR”: rank reduction. SMW:
Sherman-Morrison-Woodbury formula. “L”: local “G”: global “iter”: iterative. “NN
ind.”: how to calculate Pg is independent of the neural network architecture. If the ma-
trix C is “full” granularity, it can be applied to any granularity (e.g., PSGD (KF), TONGA
(unit) introduced by the authors), but some methods require additional derivation, compu-
tation and memory costs.

Method
Curvature matrix C (§2.1) Representation of C (§2.2) Solver for Pg ≈ C−1g (§2.3)

NN ind.
type matrix granularity format type key operations

LiSSA [1] sharpness H full dense G iter Neumann series ✓
PSGD [25] sharpness H |λ| full dense G iter triangular solve & SGD ✓
Neumann optimizer [? ] sharpness H full matrix-free L iter Neumann series ✓
Hessian-free [27] sharpness H,G full matrix-free L iter conjugate gradient ✓
KSD [? ] sharpness H,G full matrix-free L iter Krylov subspace method ✓
L-BFGS [26] sharpness Ĥbfgs full matrix-free G iter approx. BFGS ✓
SMW-GN [39] sharpness G full Gram, RR L direct SMW inverse ✗

SMW-NG [39] grad 2ndm F̂emp full Gram, RR L direct SMW inverse ✗

TONGA [41] grad 2ndm F̂emp full Gram, RR G direct SMW solve & eigendecomp. ✓
M-FAC [11] grad 2ndm F̂ batch

emp full Gram, RR G direct SMW solve ✓
GGT [2] grad 2ndm (F̂ batch

emp )1/2 full Gram, RR G direct SMW solve ✓
FANG [14] grad cov F̂nmc full sparse L/G direct incomplete Cholesky ✓

PSGD (KF) [25] sharpness H |λ| layer KF-io G iter triangular solve & SGD ✗

K-BFGS [? ] sharpness Ĥbfgs layer KF-io G iter BFGS ✗

K-FAC [29] grad cov, 2ndm F̂nmc, F̂emp layer KF-io L/G direct Cholesky inverse ✗

KFLR [5] grad cov F layer KF-io L/G direct Cholesky inverse ✗

KFRA [5] grad cov, 2ndm F̂nmc, F̂emp layer KF-io L/G direct Cholesky inverse & recursion ✗

EKFAC [12] grad cov, 2ndm F̂emp layer KF-io L/G direct eigendecomp. (or SVD) ✗

SKFAC [44] grad cov, 2ndm F̂1mc, F̂emp layer KF-io, RR L direct SMW inverse & reduction ✗

SENG [46] grad 2ndm F̂emp layer Gram, RR L/G direct SMW inverse & sketching ✗

TNT [40] grad cov, 2ndm F̂nmc, F̂emp layer KF-dim L direct Cholesky inverse ✓
Shampoo [15] grad 2ndm (F̂ batch

emp )1/2 layer KF-dim G direct eigendecomp. ✓

unit-wise NG [32] grad cov, 2ndm F̂nmc, F̂emp unit dense L/G direct Cholesky inverse ✗

TONGA (unit) [41] grad 2ndm F̂emp unit Gram, RR G direct SMW solve & eigendecomp. ✗

AdaHessian [? ] sharpness H element dense G direct element-wise division ✓
SFN [7] sharpness H |λ| element dense L/G direct element-wise division ✓
Equilibrated SGD [8] sharpness H |λ| element dense L/G direct element-wise division ✓
AdaGrad [10] grad 2ndm (F̂ batch

emp )1/2 element dense G direct element-wise division ✓
Adam [21] grad 2ndm (F̂ batch

emp )1/2 element dense G direct element-wise division ✓

Appendix A. Target gradient preconditioning methods

We describe PyTorch-style pseudo codes for SMW-NG [39] (algorithm 1), PSGD [25] (algorithm 2),
K-FAC (with F̂1mc) [29] (algorithm 3), and Shampoo [15] (algorithm 4). The color scheme for
operations are consistent with that used in Figure 3

Figure 4 shows the throughput (image/s) of gradient preconditioning methods while varying
mini-batch size, matrix update interval, and number of power iterations.
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Algorithm 1 SMW-NG
1: procedure SMWEMPNATURALGRADIENTMAKER(the old parameters θ[old])
2: y = model(x)
3: losses = F.cross entropy(y, t, reduction=’none’)
4: G = 0
5: torch.autograd.grad(losses.sum(), model.parameters(), retain graph=True)
6: # for each layer during torch.autograd.grad()
7: G += torch.mm(act, act⊤).mul(torch.mm(err, err⊤))
8: v = G.sum(dim=1)
9: b = cholesky solve(G, v, damping)

10: ones = torch.ones like(b)
11: batch loss.backward(gradient=(ones - b) / damping)
12: update = [p.grad for p in model.parameters()]
13: θ[new] = θ[old] - µ*update
14: end procedure

Algorithm 2 PSGD
1: procedure PSGDGRADIENTMAKER(inputs: the old preconditioner Q[old], the old parameters

θ[old])
2: y = model(x)
3: loss = F.cross entropy(y, t)
4: grad = torch.autograd.grad(loss, model.parameters(), create graph=True)
5: vs = [torch.randn like(p) for p in model.parameters()]
6: Hvs = torch.autograd.grad(grads, params, grad outputs=vs)
7: a = torch.mm(Q[old], Hvs)
8: b = torch.linalg.solve triangular(Q⊤

[old], vs, upper=False)
9: ∇ϵ = 2*torch.tril(aa⊤-bb⊤)

10: Q[new] = Q[old] - scalar*torch.mm(∇ϵ, Q[old])
11: update = torch.linalg.multi dot([Q⊤

[new], Q[new], grad])
12: θ[new] = θ[old] - µ*update
13: end procedure
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Algorithm 3 K-FAC (1mc)
1: procedure KFACGRADIENTMAKER(inputs: the old parameters θ[old])
2: y = model(x)
3: loss = F.cross entropy(y, t)
4: p = F.softmax(y)
5: log p = F.log softmax(y)
6: with torch.no grad():
7: t mc = torch.distribution.Categorical(p).sample()
8: nll = F.nll loss(log p, t mc)
9: nll.backward(retain graph=True)

10: # for each layer during .backward()
11: A = torch.mm(act⊤, act)
12: B = torch.mm(err⊤, err)
13: Ainv = torch.cholesky inverse(torch.linalg.cholesky(A))
14: Binv = torch.cholesky inverse(torch.linalg.cholesky(B))
15: loss.backward()
16: # for each layer
17: grad = [param.grad for param in layer]
18: update = torch.linalg.multi dot([Binv, grad, Ainv])
19: θ[new] = θ[old] - µ*update
20: end procedure

Algorithm 4 Shampoo
1: procedure SHAMPOOOPTIMIZER(inputs: the old left-hand-side preconditioner L[old], the old

right-hand-side preconditioner R[old], the old parameters θ[old])
2: y = model(x)
3: loss = F.cross entropy(y, t)
4: loss.backward()
5: # for each layer
6: grad = [param.grad for param in layer]
7: L[new] = L[old] + torch.mm(grad, grad⊤)
8: R[new] = R[old] + torch.mm(grad⊤, grad)

9: Compute L−1/4
[new] from the eigendecomposition by num iters power iterations

10: Compute R−1/4
[new] from the eigendecomposition by num iters power iterations

11: update = torch.linalg.multi dot([L−1/4
[new], grad, R−1/4

[new]])
12: θ[new] = θ[old] - µ*update
13: end procedure
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Figure 4: Throughput (image/s) of gradient preconditioning methods compared to SGD with var-
ious mini-batch sizes and matrix update intervals in the same setting as Figure 3. For
Shampoo we observe the effect on throughput of varying the number of power iterations
(num iters) for the eigendecomposition of the Kronecker factors.

Appendix B. Experimental settings

We split the training set of MNIST (60,000 images) into 49,152 and 10,848 images for training
and validation, respectively, and evaluate the test accuracy using the testing set (10,000 images).
Similarly, we split the training set of CIFAR-10 (50,000 images) into 45,056 and 4,944 images for
training and validation, respectively, and evaluate the test accuracy using the testing set (10,000
images). For each task, we tune the mini-batch size, initial learning rate, number of epochs, matrix
update interval (for PSGD, K-FAC, and Shampoo), damping τ (for SMW-NG, PSGD, and K-FAC),
and number of power iterations (for Shampoo for the eigendecomposition of the Kronecker fac-
tors) using the Bayesian optimization under a predefined time budget within the searching spaces
described below. The count of combinations explored during the Bayesian optimization is summa-
rized in Table 4. The learning rate is schedule by the cosine annealing decay so that it becomes 0
at the end of training (i.e., the number of epochs affects the decaying speed of learning rate). We
apply gradient clipping with the maximum norm of 1. For each task and method, we report the test
accuracy and training time of the model checkpoint (in every epoch) achieving the best validation
accuracy in Table 2. As a baseline, we also train models with SGD with momentum of 0.9.

B.1. MLP on MNIST

• Mini-batch size : {64,128,256,512,1024,2048}

• Initial learning rate : {3e-1,1e-1,3e-2,1e-2,3e-3,1e-3}

• Number of epochs : {5,10,20}

• Matrix update interval (PSGD, K-FAC, and Shampoo) : {1,3,10,30,100,300}

• Damping τ (SMW-NG, PSGD, and K-FAC) : {1,1e-3,1e-5}

• Number of power iterations (Shampoo) : {10,25,50}

We use a weight decay of 5e-4 and apply no data augmentation.
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B.2. ResNet18 and WideResNet on CIFAR-10

We use WideResNet with a depth of 28. We use the existing implementation5 for defining these
architectures. For training WideResNet we adopt dropout(droprate=0.3).

• Mini-batch size : {64,128,256,512,1024,2048}

• Initial learning rate : {3e-1,1e-1,3e-2,1e-2,3e-3,1e-3}

• Number of epochs : {100,200}

• Matrix update interval (for PSGD, K-FAC, and Shampoo) : {3,10,30,100,300}

• Damping τ (for SMW-NG, PSGD, and K-FAC) : {1,1e-3,1e-5}

• Number of power iterations (for Shampoo) : {10,25,50}

We use a weight decay of 5e-4. We apply RandomCrop, RandomHorizontalFlip and Cutout as
data augmentation.

B.3. ViT-tiny and MLP-Mixer-base on CIFAR-10

We fine-tune ViT-T/16 and Mixer-B/16 models pretrained on ImageNet-1K.

• Mini-batch size : {64,128,256}

• Initial learning rates : {3e-1,1e-1,3e-2,1e-2,3e-3,1e-3}

• Number of epochs : {10,20}

• Matrix update interval (for PSGD, K-FAC, and Shampoo) : {3,10,30,100,300}

• Damping τ (for PSGD and K-FAC) : {1,1e-3,1e-5}

• Number of power iteration (for Shampoo) : {10,25,50}

We do not use a weight decay. We apply RandomCrop, RandomHorizontalFlip and Cutout as
data augmentation.

5. https://github.com/uoguelph-mlrg/Cutout
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Table 4: The count of combinations explored during the Bayesian optimization for each setting.
Relatively lower counts are due to the lower average throughput (image/s).

Method
MNIST CIFAR-10

MLP (w=128) MLP (w=512) MLP (w=2048) ResNet18 WideResNet ViT-tiny MLP-Mixer-base

SGD 344 332 384 60 32 65 45

SMW-NG (w/o RR) 353 408 303 47 25 - -
PSGD (KF) 392 369 288 50 79 71 61
K-FAC (1mc) 255 317 420 121 79 71 43
Shampoo 150 83 43 29 73 83 52
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