
HOOML2022: Order up! The Benefits of Higher-Order Optimization in Machine Learning

ASDL: A Unified Interface for Gradient Preconditioning in PyTorch

Kazuki Osawa KAZUKI.OSAWA@INF.ETHZ.CH
ETH Zurich, Switzerland

Satoki Ishikawa RIVERSTONE@RIO.GSIC.TITECH.AC.JP
Rio Yokota RIOYOKOTA@GSIC.TITECH.AC.JP
Tokyo Institute of Technology, Japan

Shigang Li SHIGANGLI.CS@GMAIL.COM
Beijing University of Posts and Telecommunications, China

Torsten Hoefler HTOR@INF.ETHZ.CH

ETH Zurich, Switzerland

Abstract
Gradient preconditioning is a key technique to integrate the second-order information into gradi-
ents for improving and extending gradient-based learning algorithms. In deep learning, stochastic-
ity, nonconvexity, and high dimensionality lead to a wide variety of gradient preconditioning meth-
ods, with implementation complexity and inconsistent performance and feasibility. We propose the
Automatic Second-order Differentiation Library (ASDL), an extension library for PyTorch, which
offers various implementations and a plug-and-play unified interface for gradient preconditioning.
ASDL enables the study and structured comparison of a range of gradient preconditioning methods.

1. Introduction

Gradient preconditioning is a key technique for integrating second-order information such as loss
sharpness (second-order derivatives) and gradient covariance/second moment (second-order statis-
tics) into gradients. In deep learning in various domains such as vision [33], language [4, 38],
graph [18], reinforcement learning [19], and quantum computing [43], gradient preconditioning has
been reported to improve and extend gradient-based learning algorithms. The benefits of gradient
preconditioning includes faster convergence of training [3, 29], more robust approximate Bayesian
inference [20, 31, 48], regularization to avoid forgetting in continual learning [22, 35], identifying
influential parameters and examples on model’s output [16, 23], estimation of the mini-batch size
with high data efficiency [30], and generic probabilistic prediction via gradient boosting [9].

To integrate the second-order information into the gradient g, the gradient preconditioning ap-
plies the preconditioning matrix P to get the preconditioned gradient Pg. In deep learning, where
stochasticity, nonconvexity, and high dimensionality are inherent, there are a variety of choices for
(i) the curvature matrices C containing various forms of second-order information (§2.1), (ii) the
representations of C based on the neural network structures and matrix properties (§2.2), and (iii)
the solvers for computing Pg ≈ C−1g (§2.3). This leads to a diverse set of gradient precondition-
ing methods (Figure 1,Table 1), each requiring algorithm-specific and complex implementations,
making it challenging to incorporate them into existing training pipelines that usually use SGD-
based gradient methods today. Furthermore, it is hard to switch between different methods in order
to compare them. This implementation issue is critical because the compute performance, pre-

© K. Osawa, S. Ishikawa, R. Yokota, S. Li & T. Hoefler.

ASDL: A UNIFIED INTERFACE FOR GRADIENT PRECONDITIONING IN PYTORCH

Loss sharpness
• Hessian
• Absolute Hessian
• BFGS Hessian
• Gauss-Newton matrix
Gradient covariance
• Fisher information matrix
• FIM est. by MC samples
Gradient 2nd moment
• Empirical Fisher
• Batched empirical Fisher

Curvature matrix 𝐶 (§2.1)

𝐻

𝐹

𝐻|"|
𝐻##$%&

𝐺

𝐹%'()

𝐹%*(+
𝐹%*(+#,-).

Solver for 𝑃𝑔 ≈ 𝐶!"𝑔 (§2.3)

Local iterative (w/ matrix-free)
• Conjugate gradient
• Krylov subspace
• Neumann series
Global iterative
• BFGS
• Learning by SGD
Local/global direct
• Cholesky inverse/solve
• Eigendecomposition
• SMW formula

−1

=

𝑡 + 1 𝑡
←

Representation of 𝐶 (§2.2)

Full
• Dense/sparse/low-rank
• Matrix-free/Gram
Layer-wise (block-diagonal)
• Dense/sparse/low-rank
• Gram/Kronecker-factored
Unit-wise (block-diagonal)
• Dense/sparse/low-rank
• Gram
Element-wise (diagonal)
• Dense/sparse

−1 −1

Figure 1: Three key components of gradient preconditioning in deep learning

diction accuracy, and feasibility (in terms of budget of time and memory) of methods are highly
dependent on neural network architectures and specific training settings (§4).

To address this, we propose the Automatic Second-order Differentiation Library (ASDL), which
extends PyTorch [37], an automatic-differentiation library, with a unified interface for gradient
preconditioning using various curvature matrices, representations, and solvers (Figure 2) that is
compatible with several types of training pipelines and neural network architectures.

2. Gradient Preconditioning in Deep Learning

Notations The mini-batch empirical loss L(θ) := 1
|B|

∑
(x,t)∈B ℓ(x, t;θ) = ⟨ℓ(x, t;θ)⟩ is the

average of the per-example negative log-likelihood ℓ(x, t;θ) := − log pθ(t|x) =: h(f(x;θ), t) for
each input-target pair (x, t) in a mini-batch B sampled from the training set. θ ∈ RP is the column
vector containing the neural network parameters, ⟨·⟩ represents the average over B, pθ is model’s
predictive distribution, q is input distribution, and f is the neural network with K output neurons,
g := ∇L(θ) ∈ RP is the mini-batch gradient, and Jf (x) ∈ RK×P is the Jacobian of f w.r.t. θ.

2.1. Curvature matrices

Loss sharpness The Hessian H := ∇2L =
〈
∇2ℓ(x, t;θ)

〉
∈ RP×P is the second-order deriva-

tive of L representing the loss sharpness [17], and the Newton direction is Pg = H−1g . The
absolute Hessian H |λ|, which replaces the eigenvalues of H by their absolute values, is preferred
in optimization of a nonconvex L to avoid saddle points [7, 8, 25]. The BFGS method estimates H
(or H−1) with the BFGS Hessian Ĥbfgs (or Ĥbfgs

−1), which is the accumulation of the changes in
g (i.e., changes in the first-order derivatives) and θ during iterative optimization of θ with Pg =
Ĥbfgs

−1g. The (generalized) Gauss-Newton matrix G :=
〈
Jf (x)

⊤∇2
yh(y, t)|y=f(x)Jf (x)

〉
[42],

which ignores the second-order derivative of f w.r.t. θ in H (i.e., views f as linear [13]) and is
positive semi-definite, is also preferred in non-convex optimization [27].

Gradient covariance The Fisher F := Eq(x)

[
Epθ(t′|x)

[
∇ log pθ(t

′|x)∇ log pθ(t
′|x)⊤

]]
∈ RP×P

is the covariance of gradient of log-likelihood ∇ log pθ. F is also the second-order derivative of
the KL-divergence DKL(pθ||pθ+∆θ) and is used as C in the natural gradient descent (NGD) [3]:
Pg = F−1g. In practice, Eq(x)[·] is estimated with ⟨·⟩, and F = G for cross-entropy and MSE
loss [36], connecting the loss sharpness and gradient covariance perspectives in optimization [28].

2

ASDL: A UNIFIED INTERFACE FOR GRADIENT PRECONDITIONING IN PYTORCH

Table 1: Representative gradient preconditioning methods in deep learning. “KF”: Kronecker-
factored. “RR”: Rank reduction. “SMW”: Sherman-Morrison-Woodbury formula. Meth-
ods analyzed in this study are underlined. See Table 3 for a more comprehensive list.

Method
Curvature matrix C (§2.1) Representation of C (§2.2) Solver for Pg ≈ C−1g (§2.3)

type matrix granularity format type key operations

Hessian-free [27] sharpness H,G full matrix-free local iterative conjugate gradient
SMW-NG [39] grad 2ndm F̂emp full Gram, RR local direct SMW inverse
PSGD (KF) [25] sharpness H |λ| layer KF global iterative triangular solve, SGD
K-FAC [29] grad cov, 2ndm F̂1mc, F̂emp layer KF local/global direct Cholesky inverse
Shampoo [15] grad 2ndm (F̂ batch

emp)1/2 layer KF global direct eigendecomp.
Adam [21] grad 2ndm (F̂ batch

emp)1/2 element dense global direct element-wise division

Epθ(t′|x)[·] involves K backward passes for ∇ log pθ [6] (e.g., K = 1000 for ImageNet-1K), so F

is often estimated with the MC Fisher F̂nmc with n Monte-Carlo (MC) samples of tmc ∼ pθ(t
′|x).

Gradient second moment The empirical Fisher F̂emp :=
〈
∇ log pθ(t|x)∇ log pθ(t|x)⊤

〉
=〈

∇ℓ(x, t;θ)∇ℓ(x, t;θ)⊤
〉
∈ RP×P is the second moment of per-example empirical gradient. It

can be computed during the backward pass for ∇L and is preferred in large-scale settings [33, 38].
As F̂emp is no longer centered (i.e., ⟨∇ℓ(x, t;θ)⟩ ≠ 0), it is claimed not to capture the useful
second-order information for optimization [?] while it is empirically observed that NGD with
F̂emp still achieves the fast convergence with smoothed t [34, 38]. Adaptive gradient methods such
as Adam [21] and Shampoo [15] use the batched empirical Fisher F̂ batch

emp (T) :=
∑T

t=1 αtgtg
⊤
t

(0 ≤ αt ≤ 1, gt is for Bt at t-th training step), an online estimate of the second moment of mini-
batch empirical gradient: PgT = (F̂ batch

emp (T))−1/2gT . F̂ batch
emp looses the second-order information

when the mini-batch size |B| is large [13], but it is also empirically observed that Shampoo achieves
a faster convergence than first-order optimizers (SGD, LAMB [47]) in large-batch training [4]1.

2.2. Representations of matrices

It is infeasible to materialize C ∈ RP×P and directly invert it (C−1) with the O(P 3) cost for deep
neural networks with a massive number of parameters P (e.g., billions). To make practical use of
(a portion of) the information in C, there are various matrix representations using block-diagonal
approximation, compact format, or both.

Full matrix Typical compact formats for exploiting the full C include matrix-vector products
(matrix-free) (e.g., Hessian-free) and Gram matrices with rank reduction (e.g., SMW-NG).

Layer-/unit-/element-wise block-diagonal matrix Granularity of diagonal blocks are often per
neural network layer, per unit, or per element of θ (i.e., diagonal, e.g., Adam). Kronecker-factored
matrices (e.g., PSGD, K-FAC, Shampoo) is one of the most common formats for layer-wise blocks.

1. See [13] for a more detailed description of these curvature matrices.

3

ASDL: A UNIFIED INTERFACE FOR GRADIENT PRECONDITIONING IN PYTORCH

For x, t in data_loader:
optimizer.zero_grad()

Compute mini-batch gradient g
y = model(x)
loss = F.cross_entorpy(y, t)
loss.backward()

optimizer.step()

gm = XXXGradientMaker(model, XXXGradientConfig())

dummy_y = gm.setup_model_call(model, x)
gm.setup_loss_call(F.cross_entropy, dummy_y, t)
y, loss = gm.forward_and_backward()

Unified interface to compute preconditioned mini-batch gradient 𝑃𝑔

K-FAC (1mc) [KfacGradientMaker]
y = model(x)
loss = F.cross_entropy(y, t)
if step % interval == 0:

p = F.softmax(y)
log_p = F.log_softmax(y)
with torch.no_grad():
t_mc = Categorical(p).sample()

nll = F.nll_loss(log_p, t_mc)
nll.backward(retain_graph=True)
upd_curvature_matrix()
upd_precond_matrix()

loss.backward()
precondition()

SMW-NG [SmwEmpNaturalGradientMaker]
y = model(x)
losses = F.cross_entropy(

y, t, reduction=‘none’)
upd_curvature_matrix()
b = upd_precond_matrix()
g = torch.ones_like(b) - b
batch_loss.backward(gradient=g)
loss = losses.mean()

PSGD [PsgdGradientMaker]
y = model(x)
loss = F.cross_entropy(y, t)
if step % interval == 0:

grads = torch.autograd.grad(
loss, params,
create_graph=True)

vs = [torch.randn_like(p)
for p in params]

Hvs = torch.autograd.grad(
grads, params,
grad_outputs=vs)

upd_precond_matrix(vs, Hvs)
else:

loss.backward()
precondition()

replaceable

Figure 2: Unified interface for gradient preconditioning in PyTorch. XXXGradientMaker
(“XXX”: algorithm name), offered by ASDL, hides algorithm-specific and complex
operations for Pg in a unified way. For training without gradient preconditioning,
GradientMaker computes g with the same interface (i.e., no need to switch scripts).
For ease of comparison, the color scheme for operations is consistent with Figure 3.

2.3. Solvers for preconditioning gradient

Local vs. global Solvers to compute Pg ≈ C−1g are first classified by the scope of information
captured by C, i.e., local information within one B vs. global information associated with multiple
Bs observed through learning. By definition, solvers with Ĥbfgs or F̂ batch

emp are global solvers.

Iterative vs. direct Solvers are also classified by the type of linear solver for Creprx = g, i.e.,
iterative vs. direct, where Crepr is a certain representation (§2.2) of selected C (§2.1) containing
local or global information. An iterative solver uses the matrix-free format for local while it ma-
terializes Crepr for global. A damping τI (τ > 0) is often added to Crepr to improve numerical
stability and/or guarantee positive definiteness ((Crepr + τI) ≻ 0). This allows a fast direct solver
using Cholesky decomposition (e.g., K-FAC) or SMW formula (e.g., SMW-NG) to be applied.

3. Unified Interface for Gradient Preconditioning in ASDL

Our Automatic Second-order Differentiation Library (ASDL)2 implements gradient precondition-
ing methods listed in Table 1. Figure 2 shows a standard training pipeline in PyTorch with mini-
batch gradients, the (simplified) operations in SMW-NG, PSGD, and K-FAC (with F̂1mc) (see Ap-
pendix A for details), and the unified interface, XXXGradientMaker, which enables an easy
integration of gradient preconditioning by hiding the algorithm-specific and complex operations.
Each method exhibits compute performance, prediction accuracy, and feasibility depending highly
on tasks (§4), so capability to flexibly switch/compare methods is important.

2. https://github.com/kazukiosawa/asdfghjkl

4

https://github.com/kazukiosawa/asdfghjkl

ASDL: A UNIFIED INTERFACE FOR GRADIENT PRECONDITIONING IN PYTORCH

512 1024 2048 4096
width

0

5

Ti
m

e
[m

s]

SMW-NG (w/o RR)
(depth=3, bs=32, int.=1)

0

50

3 6 9 12
depth

0

10

Ti
m

e
[m

s]

(width=512, bs=32, int.=1)

0

10

32 128 512 2048
bs

0

5

Ti
m

e
[m

s]

(width=512, depth=3, int.=1)

0

50

1
interval

0.0

2.5

Ti
m

e
[m

s]

(width=512, depth=3, bs=32)

512 1024 2048 4096
width

0

100

PSGD (KF)
(depth=3, bs=32, int.=1)

0

500

3 6 9 12
depth

0

20

(width=512, bs=32, int.=1)

0

50

32 128 512 2048
bs

0

10
(width=512, depth=3, int.=1)

0

25

1 2 10 20 100
interval

0

10
(width=512, depth=3, bs=32)

512 1024 2048 4096
width

0

100

K-FAC (1mc)
(depth=3, bs=32, int.=1)

0

250

3 6 9 12
depth

0

50
(width=512, bs=32, int.=1)

0

20

32 128 512 2048
bs

0

10

(width=512, depth=3, int.=1)

0

20

1 2 10 20 100
interval

0

10

(width=512, depth=3, bs=32)

512 1024 2048 4096
width

0

2000

Shampoo (num_iters=30)
(depth=3, bs=32, int.=1)

0

500

M
em

or
y

[M
B]

3 6 9 12
depth

0

200

(width=512, bs=32, int.=1)

0

50

M
em

or
y

[M
B]

32 128 512 2048
bs

0

50

(width=512, depth=3, int.=1)

0

25

M
em

or
y

[M
B]

1 2 10 20 100
interval

0

50

(width=512, depth=3, bs=32)

forward
forward graph

backward (1st)
backward (1st & 2nd) graph

backward (2nd)
grad

upd curvature matrix
curvature matrix

upd precond matrix
precond matrix

precondition

Figure 3: One-step time and peak memory consumption (left and right bar at each point in each
box, respectively) for MLPs on MNIST. In the bottom row (scaling interval), the
memory is not shown because it is constant. Times are the averages of 100 runs on an
NVIDIA RTX 3090. An MLP has depth layers (784−width−· · ·−width−10) with
ReLU non-linearities. width, depth, mini-batch size (bs), and matrix update interval
(interval) are independently scaled from the base values (width=512, depth=3, bs=32,
interval=1) for each method (except for SMW-NG, which can only take an interval=1).

4. Case Studies with ASDL

Using ASDL, we compare gradient preconditioning methods for optimization, i.e., adaptive gradient
methods (with F̂ batch

emp) and second-order optimization methods (with other C) in vision tasks.

Time and memory Figure 3 shows the time per step, peak memory consumption, and their break-
down in training MLPs on MNIST [24] using the representative methods summarized in Table 1.
Each method behaves differently with respect to the scaling of the MLP’s width (number of neu-
rons) and depth (number of layers), the mini-batch size (bs), and the matrix update interval
(interval). See Appendix A for a more detailed description of operations in each method.

Neural network training Table 2 shows the training results on MNIST and CIFAR-10 with var-
ious neural network architectures and methods.3 For each task, the mini-batch size, learning rate,
number of epochs, matrix update interval (if applicable), damping τ (if applicable), and number of
power iterations (Shampoo) are tuned with Bayesian optimization under a predefined time budget.4

5. Discussion

By ASDL, we observe that no gradient preconditioning method is always superior (in the sense
of compute performance, prediction accuracy, and feasibility) to another — it is critical to flexibly
switch and compare methods. The extension of this work to distributed and mixed-precision train-
ing, where time and numerical stability bottlenecks change [4, 45], is an important future direction.

3. SMW-NG for ViT-tiny and MLP-Mixer-base, sequence models, are not supported in ASDL yet, but SMW-based
methods are often infeasible because “bs” (in Figure 3) is the number of tokens = mini-batch size × sequence length.

4. See Appendix B for the details of experimental settings.

5

ASDL: A UNIFIED INTERFACE FOR GRADIENT PRECONDITIONING IN PYTORCH

Table 2: The test accuracy (and training time) for models achieving the best validation accuracy.
For each task, the best accuracy is bolded and the shortest time is underlined. “w”: width.

Method
MNIST CIFAR-10

MLP (w=128) MLP (w=512) MLP (w=2048) ResNet18 WideResNet ViT-tiny MLP-Mixer-base

SGD 97.94 (48.8s) 98.42 (101.5s) 98.46 (56.4s) 95.85 (33m) 96.97 (178m) 97.81 (15.7m) 96.71 (72m)

SMW-NG (w/o RR) 97.99 (160.2s) 97.74 (48.23s) 98.27 (164.7s) 94.27 (92m) 94.93 (454m) - -
PSGD (KF) 98.05 (42.7s) 98.33 (86.9s) 98.44 (26.5s) 96.07 (44m) 96.99 (276m) 97.95 (28.1m) 97.33 (109m)
K-FAC (1mc) 97.94 (45.4s) 98.42 (98.8s) 98.51 (15.0s) 95.97 (32m) 96.95 (167m) 97.68 (8.0m) 97.14 (70m)
Shampoo 98.13 (739.6s) 98.35 (259.7s) 98.55 (88.9s) 96.38 (275m) 96.74 (113m) 97.93 (39.9m) 96.81 (111m)

Acknowledgments

K.O. is supported by an ETH Zurich Postdoctoral Fellowship. This work was supported by the
PASC DaCeMI project, received EuroHPC-JU funding under grant MAELSTROM, No. 955513
as well as funding from the European Research Council under Project PSAP, No. 101002047,
and we thank the Swiss National Supercomputing Center (CSCS) for supporting us with compute
infrastructure. This work is supported by JST CREST Grant Number JPMJCR2112.

References

[1] Naman Agarwal, Brian Bullins, and Elad Hazan. Second-Order Stochastic Optimization for
Machine Learning in Linear Time. The Journal of Machine Learning Research, 18(1):4148–
4187, 2017.

[2] Naman Agarwal, Brian Bullins, Xinyi Chen, Elad Hazan, Karan Singh, Cyril Zhang, and
Yi Zhang. Efficient Full-Matrix Adaptive Regularization. In Proceedings of International
Conference on Machine Learning (ICML), pages 102–110, 2019.

[3] Shun-ichi Amari. Natural Gradient Works Efficiently in Learning. Neural Computation, 10
(2):251–276, 1998.

[4] Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, and Yoram Singer. Scalable Second
Order Optimization for Deep Learning. arXiv preprint arXiv:2002.09018, 2021. URL http:
//arxiv.org/abs/2002.09018.

[5] Aleksandar Botev, Hippolyt Ritter, and David Barber. Practical Gauss-Newton Optimisation
for Deep Learning. In Proceedings of International Conference on Machine Learning (ICML),
pages 557–565, 2017.

[6] Felix Dangel, Frederik Kunstner, and Philipp Hennig. BackPACK: Packing more into
Backprop. In International Conference on Learning Representations (ICLR), 2020. URL
https://openreview.net/forum?id=BJlrF24twB.

[7] Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and
Yoshua Bengio. Identifying and attacking the saddle point problem in high-dimensional non-
convex optimization. In Advances in Neural Information Processing Systems, volume 27,
2014.

6

http://arxiv.org/abs/2002.09018
http://arxiv.org/abs/2002.09018
https://openreview.net/forum?id=BJlrF24twB

ASDL: A UNIFIED INTERFACE FOR GRADIENT PRECONDITIONING IN PYTORCH

[8] Yann N. Dauphin, Harm de Vries, and Yoshua Bengio. Equilibrated adaptive learning rates for
non-convex optimization. In Advances in Neural Information Processing Systems, volume 28,
August 2015.

[9] Tony Duan, Anand Avati, Daisy Yi Ding, Khanh K. Thai, Sanjay Basu, Andrew Y. Ng, and
Alejandro Schuler. NGBoost: Natural Gradient Boosting for Probabilistic Prediction. In
International Conference on Machine Learning (ICML), pages 2690–2700, June 2020.

[10] John Duchi, Elad Hazan, and Yoram Singer. Adaptive Subgradient Methods for Online Learn-
ing and Stochastic Optimization. Journal of Machine Learning Research, 12:2121–2159,
2011.

[11] Elias Frantar, Eldar Kurtic, and Dan Alistarh. Efficient Matrix-Free Approximations of
Second-Order Information, with Applications to Pruning and Optimization. In Advances in
Neural Information Processing Systems, volume 34, pages 14873–14886, July 2021.

[12] Thomas George, César Laurent, Xavier Bouthillier, Nicolas Ballas, and Pascal Vincent. Fast
Approximate Natural Gradient Descent in a Kronecker Factored Eigenbasis. In Advances in
Neural Information Processing Systems, pages 9550–9560, 2018.

[13] Roger Grosse. Chapter 3: Metrics, 2022. URL https://www.cs.toronto.edu/

˜rgrosse/courses/csc2541_2021/readings/L03_metrics.pdf.

[14] Roger B Grosse and Ruslan Salakhutdinov. Scaling Up Natural Gradient by Sparsely Factor-
izing the Inverse Fisher Matrix. In International Conference on Machine Learning (ICML),
pages 2304–2313, 2015.

[15] Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned Stochastic Tensor
Optimization. In Proceedings of International Conference on Machine Learning (ICML),
pages 1842–1850, 2018.

[16] Babak Hassibi and David G. Stork. Second order derivatives for network pruning: Optimal
Brain Surgeon. In Advances in Neural Information Processing Systems, pages 164–171. 1993.

[17] Sepp Hochreiter and Jurgen Schmidhuber. Flat Minima. Neural Computation, 9(1):1–42,
1997.

[18] Mohammad Rasool Izadi, Yihao Fang, Robert Stevenson, and Lizhen Lin. Optimization of
Graph Neural Networks with Natural Gradient Descent. In IEEE International Conference on
Big Data, pages 171–179, 2020.

[19] Sham M Kakade. A Natural Policy Gradient. In T. G. Dietterich, S. Becker, and Z. Ghahra-
mani, editors, Advances in Neural Information Processing Systems, pages 1531–1538, 2002.

[20] Mohammad Emtiyaz Khan, Didrik Nielsen, Voot Tangkaratt, Wu Lin, Yarin Gal, and Akash
Srivastava. Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam. In
International Conference on Machine Learning (ICML), pages 2616–2625, 2018.

[21] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In Inter-
national Conference on Learning Representations (ICLR), 2015.

7

https://www.cs.toronto.edu/~rgrosse/courses/csc2541_2021/readings/L03_metrics.pdf
https://www.cs.toronto.edu/~rgrosse/courses/csc2541_2021/readings/L03_metrics.pdf

ASDL: A UNIFIED INTERFACE FOR GRADIENT PRECONDITIONING IN PYTORCH

[22] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska,
Demis Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catas-
trophic forgetting in neural networks. Proceedings of the national academy of sciences, 114
(13):3521–3526, 2017.

[23] Pang Wei Koh and Percy Liang. Understanding Black-box Predictions via Influence Functions.
In Proceedings of International Conference on Machine Learning (ICML), pages 1885–1894,
2017.

[24] Yann LeCun, Corinna Cortes, and CJ Burges. The MNIST database of handwritten digits,
1998. URL http://yann.lecun.com/exdb/mnist.

[25] Xi-Lin Li. Preconditioned Stochastic Gradient Descent. IEEE Transactions on Neural Net-
works and Learning Systems, 29(5):1454–1466, 2018. ISSN 2162-237X, 2162-2388. doi:
10.1109/TNNLS.2017.2672978.

[26] Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method for large scale
optimization. Mathematical Programming, 45(1-3):503–528, August 1989. ISSN 0025-
5610, 1436-4646. doi: 10.1007/BF01589116. URL http://link.springer.com/
10.1007/BF01589116.

[27] James Martens. Deep learning via Hessian-free optimization. In Proceedings of International
Conference on Machine Learning (ICML), pages 735–742, 2010.

[28] James Martens. New Insights and Perspectives on the Natural Gradient Method. Journal of
Machine Learning Research, 21(146):1–76, 2020.

[29] James Martens and Roger Grosse. Optimizing Neural Networks with Kronecker-factored
Approximate Curvature. In Proceedings of International Conference on Machine Learning
(ICML), pages 2408–2417, 2015.

[30] Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. An Empirical Model
of Large-Batch Training. arXiv preprint arXiv:1812.06162, 2018.

[31] Zachary Nado, Jasper Snoek, Bowen Xu, Roger Grosse, David Duvenaud, and James Martens.
Stochastic Gradient Langevin Dynamics That Exploit Neural Network Structure. In Interna-
tional Conference on Learning Representations (ICLR) Workshop track, 2018.

[32] Y. Ollivier. Riemannian metrics for neural networks I: feedforward networks. Informa-
tion and Inference, 4(2):108–153, June 2015. ISSN 2049-8764, 2049-8772. doi: 10.1093/
imaiai/iav006. URL https://academic.oup.com/imaiai/article-lookup/
doi/10.1093/imaiai/iav006.

[33] Kazuki Osawa, Yohei Tsuji, Yuichiro Ueno, Akira Naruse, Rio Yokota, and Satoshi Matsuoka.
Large-Scale Distributed Second-Order Optimization Using Kronecker-Factored Approximate
Curvature for Deep Convolutional Neural Networks. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 12359–12367, 2019.

8

http://yann.lecun.com/exdb/mnist
http://link.springer.com/10.1007/BF01589116
http://link.springer.com/10.1007/BF01589116
https://academic.oup.com/imaiai/article-lookup/doi/10.1093/imaiai/iav006
https://academic.oup.com/imaiai/article-lookup/doi/10.1093/imaiai/iav006

ASDL: A UNIFIED INTERFACE FOR GRADIENT PRECONDITIONING IN PYTORCH

[34] Kazuki Osawa, Yohei Tsuji, Yuichiro Ueno, Akira Naruse, Chuan-Sheng Foo, and Rio Yokota.
Scalable and Practical Natural Gradient for Large-Scale Deep Learning. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 44(1):404–415, 2022.

[35] Pingbo Pan, Siddharth Swaroop, Alexander Immer, Runa Eschenhagen, Richard E. Turner,
and Mohammad Emtiyaz Khan. Continual Deep Learning by Functional Regularisation of
Memorable Past. In Advances in Neural Information Processing Systems, pages 4453–4464,
2020.

[36] Razvan Pascanu and Yoshua Bengio. Revisiting Natural Gradient for Deep Networks.
In International Conference on Learning Representations (ICLR), 2014. URL https:
//openreview.net/forum?id=vz8AumxkAfz5U.

[37] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. In Advances in Neural Information Processing
Systems (NeurIPS), pages 8026–8037, 2019.

[38] J. Gregory Pauloski, Lei Huang, Weijia Xu, Kyle Chard, Ian Foster, and Zhao Zhang. Deep
Neural Network Training with Distributed K-FAC. IEEE Transactions on Parallel and Dis-
tributed Systems, pages 1–1, 2022. ISSN 1558-2183. doi: 10.1109/TPDS.2022.3161187.
Conference Name: IEEE Transactions on Parallel and Distributed Systems.

[39] Yi Ren and Donald Goldfarb. Efficient Subsampled Gauss-Newton and Natural Gradient
Methods for Training Neural Networks. arXiv preprint arXiv:1906.02353, 2019. URL
http://arxiv.org/abs/1906.02353.

[40] Yi Ren and Donald Goldfarb. Tensor Normal Training for Deep Learning Models. In Advances
in Neural Information Processing Systems, volume 34, pages 26040–26052, 2021.

[41] Nicolas L. Roux, Pierre-antoine Manzagol, and Yoshua Bengio. Topmoumoute Online Natural
Gradient Algorithm. In J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis, editors, Advances in
Neural Information Processing Systems 20, pages 849–856. Curran Associates, Inc., 2008.

[42] Nicol N. Schraudolph. Fast Curvature Matrix-Vector Products for Second-Order Gradi-
ent Descent. Neural Computation, 14(7):1723–1738, July 2002. ISSN 0899-7667, 1530-
888X. doi: 10.1162/08997660260028683. URL http://www.mitpressjournals.
org/doi/10.1162/08997660260028683.

[43] James Stokes, Josh Izaac, Nathan Killoran, and Giuseppe Carleo. Quantum Natural Gradient.
Quantum, 4:269, May 2020. ISSN 2521-327X. doi: 10.22331/q-2020-05-25-269.

[44] Zedong Tang, Fenlong Jiang, Maoguo Gong, Hao Li, Yue Wu, Fan Yu, Zidong Wang, and
Min Wang. SKFAC: Training Neural Networks With Faster Kronecker-Factored Approximate
Curvature. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 13479–13487, 2021.

9

https://openreview.net/forum?id=vz8AumxkAfz5U
https://openreview.net/forum?id=vz8AumxkAfz5U
http://arxiv.org/abs/1906.02353
http://www.mitpressjournals.org/doi/10.1162/08997660260028683
http://www.mitpressjournals.org/doi/10.1162/08997660260028683

ASDL: A UNIFIED INTERFACE FOR GRADIENT PRECONDITIONING IN PYTORCH

[45] Yuichiro Ueno, Kazuki Osawa, Yohei Tsuji, Akira Naruse, and Rio Yokota. Rich Information
is Affordable: A Systematic Performance Analysis of Second-order Optimization Using K-
FAC. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 2145–2153, August 2020. ISBN 978-1-4503-7998-4. doi:
10.1145/3394486.3403265. URL https://dl.acm.org/doi/10.1145/3394486.
3403265.

[46] Minghan Yang, Dong Xu, Zaiwen Wen, Mengyun Chen, and Pengxiang Xu. Sketch-Based
Empirical Natural Gradient Methods for Deep Learning. Journal of Scientific Computing, 92
(3):94, September 2022. ISSN 0885-7474, 1573-7691. doi: 10.1007/s10915-022-01911-x.
URL https://link.springer.com/10.1007/s10915-022-01911-x.

[47] Yang You, Igor Gitman, and Boris Ginsburg. Large Batch Training of Convolutional Networks.
arXiv preprint arXiv:1708.03888, 2017. URL http://arxiv.org/abs/1708.03888.

[48] Guodong Zhang, Shengyang Sun, David Duvenaud, and Roger Grosse. Noisy Natural Gradi-
ent as Variational Inference. In Proceedings of International Conference on Machine Learning
(ICML), pages 5852–5861, 2018.

10

https://dl.acm.org/doi/10.1145/3394486.3403265
https://dl.acm.org/doi/10.1145/3394486.3403265
https://link.springer.com/10.1007/s10915-022-01911-x
http://arxiv.org/abs/1708.03888

ASDL: A UNIFIED INTERFACE FOR GRADIENT PRECONDITIONING IN PYTORCH

Table 3: Gradient preconditioning methods in deep learning. “KF-io”: input-output Kronecker-
factored. “KF-dim”: dimensition-wise Kronecker-factored. “RR”: rank reduction. SMW:
Sherman-Morrison-Woodbury formula. “L”: local “G”: global “iter”: iterative. “NN
ind.”: how to calculate Pg is independent of the neural network architecture. If the ma-
trix C is “full” granularity, it can be applied to any granularity (e.g., PSGD (KF), TONGA
(unit) introduced by the authors), but some methods require additional derivation, compu-
tation and memory costs.

Method
Curvature matrix C (§2.1) Representation of C (§2.2) Solver for Pg ≈ C−1g (§2.3)

NN ind.
type matrix granularity format type key operations

LiSSA [1] sharpness H full dense G iter Neumann series ✓
PSGD [25] sharpness H |λ| full dense G iter triangular solve & SGD ✓
Neumann optimizer [?] sharpness H full matrix-free L iter Neumann series ✓
Hessian-free [27] sharpness H,G full matrix-free L iter conjugate gradient ✓
KSD [?] sharpness H,G full matrix-free L iter Krylov subspace method ✓
L-BFGS [26] sharpness Ĥbfgs full matrix-free G iter approx. BFGS ✓
SMW-GN [39] sharpness G full Gram, RR L direct SMW inverse ✗

SMW-NG [39] grad 2ndm F̂emp full Gram, RR L direct SMW inverse ✗

TONGA [41] grad 2ndm F̂emp full Gram, RR G direct SMW solve & eigendecomp. ✓
M-FAC [11] grad 2ndm F̂ batch

emp full Gram, RR G direct SMW solve ✓
GGT [2] grad 2ndm (F̂ batch

emp)1/2 full Gram, RR G direct SMW solve ✓
FANG [14] grad cov F̂nmc full sparse L/G direct incomplete Cholesky ✓

PSGD (KF) [25] sharpness H |λ| layer KF-io G iter triangular solve & SGD ✗

K-BFGS [?] sharpness Ĥbfgs layer KF-io G iter BFGS ✗

K-FAC [29] grad cov, 2ndm F̂nmc, F̂emp layer KF-io L/G direct Cholesky inverse ✗

KFLR [5] grad cov F layer KF-io L/G direct Cholesky inverse ✗

KFRA [5] grad cov, 2ndm F̂nmc, F̂emp layer KF-io L/G direct Cholesky inverse & recursion ✗

EKFAC [12] grad cov, 2ndm F̂emp layer KF-io L/G direct eigendecomp. (or SVD) ✗

SKFAC [44] grad cov, 2ndm F̂1mc, F̂emp layer KF-io, RR L direct SMW inverse & reduction ✗

SENG [46] grad 2ndm F̂emp layer Gram, RR L/G direct SMW inverse & sketching ✗

TNT [40] grad cov, 2ndm F̂nmc, F̂emp layer KF-dim L direct Cholesky inverse ✓
Shampoo [15] grad 2ndm (F̂ batch

emp)1/2 layer KF-dim G direct eigendecomp. ✓

unit-wise NG [32] grad cov, 2ndm F̂nmc, F̂emp unit dense L/G direct Cholesky inverse ✗

TONGA (unit) [41] grad 2ndm F̂emp unit Gram, RR G direct SMW solve & eigendecomp. ✗

AdaHessian [?] sharpness H element dense G direct element-wise division ✓
SFN [7] sharpness H |λ| element dense L/G direct element-wise division ✓
Equilibrated SGD [8] sharpness H |λ| element dense L/G direct element-wise division ✓
AdaGrad [10] grad 2ndm (F̂ batch

emp)1/2 element dense G direct element-wise division ✓
Adam [21] grad 2ndm (F̂ batch

emp)1/2 element dense G direct element-wise division ✓

Appendix A. Target gradient preconditioning methods

We describe PyTorch-style pseudo codes for SMW-NG [39] (algorithm 1), PSGD [25] (algorithm 2),
K-FAC (with F̂1mc) [29] (algorithm 3), and Shampoo [15] (algorithm 4). The color scheme for
operations are consistent with that used in Figure 3

Figure 4 shows the throughput (image/s) of gradient preconditioning methods while varying
mini-batch size, matrix update interval, and number of power iterations.

11

ASDL: A UNIFIED INTERFACE FOR GRADIENT PRECONDITIONING IN PYTORCH

Algorithm 1 SMW-NG
1: procedure SMWEMPNATURALGRADIENTMAKER(the old parameters θ[old])
2: y = model(x)
3: losses = F.cross entropy(y, t, reduction=’none’)
4: G = 0
5: torch.autograd.grad(losses.sum(), model.parameters(), retain graph=True)
6: # for each layer during torch.autograd.grad()
7: G += torch.mm(act, act⊤).mul(torch.mm(err, err⊤))
8: v = G.sum(dim=1)
9: b = cholesky solve(G, v, damping)

10: ones = torch.ones like(b)
11: batch loss.backward(gradient=(ones - b) / damping)
12: update = [p.grad for p in model.parameters()]
13: θ[new] = θ[old] - µ*update
14: end procedure

Algorithm 2 PSGD
1: procedure PSGDGRADIENTMAKER(inputs: the old preconditioner Q[old], the old parameters

θ[old])
2: y = model(x)
3: loss = F.cross entropy(y, t)
4: grad = torch.autograd.grad(loss, model.parameters(), create graph=True)
5: vs = [torch.randn like(p) for p in model.parameters()]
6: Hvs = torch.autograd.grad(grads, params, grad outputs=vs)
7: a = torch.mm(Q[old], Hvs)
8: b = torch.linalg.solve triangular(Q⊤

[old], vs, upper=False)
9: ∇ϵ = 2*torch.tril(aa⊤-bb⊤)

10: Q[new] = Q[old] - scalar*torch.mm(∇ϵ, Q[old])
11: update = torch.linalg.multi dot([Q⊤

[new], Q[new], grad])
12: θ[new] = θ[old] - µ*update
13: end procedure

12

ASDL: A UNIFIED INTERFACE FOR GRADIENT PRECONDITIONING IN PYTORCH

Algorithm 3 K-FAC (1mc)
1: procedure KFACGRADIENTMAKER(inputs: the old parameters θ[old])
2: y = model(x)
3: loss = F.cross entropy(y, t)
4: p = F.softmax(y)
5: log p = F.log softmax(y)
6: with torch.no grad():
7: t mc = torch.distribution.Categorical(p).sample()
8: nll = F.nll loss(log p, t mc)
9: nll.backward(retain graph=True)

10: # for each layer during .backward()
11: A = torch.mm(act⊤, act)
12: B = torch.mm(err⊤, err)
13: Ainv = torch.cholesky inverse(torch.linalg.cholesky(A))
14: Binv = torch.cholesky inverse(torch.linalg.cholesky(B))
15: loss.backward()
16: # for each layer
17: grad = [param.grad for param in layer]
18: update = torch.linalg.multi dot([Binv, grad, Ainv])
19: θ[new] = θ[old] - µ*update
20: end procedure

Algorithm 4 Shampoo
1: procedure SHAMPOOOPTIMIZER(inputs: the old left-hand-side preconditioner L[old], the old

right-hand-side preconditioner R[old], the old parameters θ[old])
2: y = model(x)
3: loss = F.cross entropy(y, t)
4: loss.backward()
5: # for each layer
6: grad = [param.grad for param in layer]
7: L[new] = L[old] + torch.mm(grad, grad⊤)
8: R[new] = R[old] + torch.mm(grad⊤, grad)

9: Compute L−1/4
[new] from the eigendecomposition by num iters power iterations

10: Compute R−1/4
[new] from the eigendecomposition by num iters power iterations

11: update = torch.linalg.multi dot([L−1/4
[new], grad, R−1/4

[new]])
12: θ[new] = θ[old] - µ*update
13: end procedure

13

ASDL: A UNIFIED INTERFACE FOR GRADIENT PRECONDITIONING IN PYTORCH

32 128 512 2048 8192
Mini-batch size (bs)

0.0

0.2

0.4

0.6

0.8

1.0
Th

ro
ug

hp
ut

 v
s S

GD
width=512, depth=3, interval=1

1 3 10 30 100 300 1000 3000
interval

0.0

0.2

0.4

0.6

0.8

1.0
width=512, depth=3, bs=32

SGD
SMW-NG (w/o RR)
PSGD (KF)
K-FAC (1mc)
Shampoo (num_iters=1)
Shampoo (num_iters=3)
Shampoo (num_iters=10)
Shampoo (num_iters=30)
Shampoo (num_iters=100)

Figure 4: Throughput (image/s) of gradient preconditioning methods compared to SGD with var-
ious mini-batch sizes and matrix update intervals in the same setting as Figure 3. For
Shampoo we observe the effect on throughput of varying the number of power iterations
(num iters) for the eigendecomposition of the Kronecker factors.

Appendix B. Experimental settings

We split the training set of MNIST (60,000 images) into 49,152 and 10,848 images for training
and validation, respectively, and evaluate the test accuracy using the testing set (10,000 images).
Similarly, we split the training set of CIFAR-10 (50,000 images) into 45,056 and 4,944 images for
training and validation, respectively, and evaluate the test accuracy using the testing set (10,000
images). For each task, we tune the mini-batch size, initial learning rate, number of epochs, matrix
update interval (for PSGD, K-FAC, and Shampoo), damping τ (for SMW-NG, PSGD, and K-FAC),
and number of power iterations (for Shampoo for the eigendecomposition of the Kronecker fac-
tors) using the Bayesian optimization under a predefined time budget within the searching spaces
described below. The count of combinations explored during the Bayesian optimization is summa-
rized in Table 4. The learning rate is schedule by the cosine annealing decay so that it becomes 0
at the end of training (i.e., the number of epochs affects the decaying speed of learning rate). We
apply gradient clipping with the maximum norm of 1. For each task and method, we report the test
accuracy and training time of the model checkpoint (in every epoch) achieving the best validation
accuracy in Table 2. As a baseline, we also train models with SGD with momentum of 0.9.

B.1. MLP on MNIST

• Mini-batch size : {64,128,256,512,1024,2048}

• Initial learning rate : {3e-1,1e-1,3e-2,1e-2,3e-3,1e-3}

• Number of epochs : {5,10,20}

• Matrix update interval (PSGD, K-FAC, and Shampoo) : {1,3,10,30,100,300}

• Damping τ (SMW-NG, PSGD, and K-FAC) : {1,1e-3,1e-5}

• Number of power iterations (Shampoo) : {10,25,50}

We use a weight decay of 5e-4 and apply no data augmentation.

14

ASDL: A UNIFIED INTERFACE FOR GRADIENT PRECONDITIONING IN PYTORCH

B.2. ResNet18 and WideResNet on CIFAR-10

We use WideResNet with a depth of 28. We use the existing implementation5 for defining these
architectures. For training WideResNet we adopt dropout(droprate=0.3).

• Mini-batch size : {64,128,256,512,1024,2048}

• Initial learning rate : {3e-1,1e-1,3e-2,1e-2,3e-3,1e-3}

• Number of epochs : {100,200}

• Matrix update interval (for PSGD, K-FAC, and Shampoo) : {3,10,30,100,300}

• Damping τ (for SMW-NG, PSGD, and K-FAC) : {1,1e-3,1e-5}

• Number of power iterations (for Shampoo) : {10,25,50}

We use a weight decay of 5e-4. We apply RandomCrop, RandomHorizontalFlip and Cutout as
data augmentation.

B.3. ViT-tiny and MLP-Mixer-base on CIFAR-10

We fine-tune ViT-T/16 and Mixer-B/16 models pretrained on ImageNet-1K.

• Mini-batch size : {64,128,256}

• Initial learning rates : {3e-1,1e-1,3e-2,1e-2,3e-3,1e-3}

• Number of epochs : {10,20}

• Matrix update interval (for PSGD, K-FAC, and Shampoo) : {3,10,30,100,300}

• Damping τ (for PSGD and K-FAC) : {1,1e-3,1e-5}

• Number of power iteration (for Shampoo) : {10,25,50}

We do not use a weight decay. We apply RandomCrop, RandomHorizontalFlip and Cutout as
data augmentation.

5. https://github.com/uoguelph-mlrg/Cutout

15

https://github.com/uoguelph-mlrg/Cutout

ASDL: A UNIFIED INTERFACE FOR GRADIENT PRECONDITIONING IN PYTORCH

Table 4: The count of combinations explored during the Bayesian optimization for each setting.
Relatively lower counts are due to the lower average throughput (image/s).

Method
MNIST CIFAR-10

MLP (w=128) MLP (w=512) MLP (w=2048) ResNet18 WideResNet ViT-tiny MLP-Mixer-base

SGD 344 332 384 60 32 65 45

SMW-NG (w/o RR) 353 408 303 47 25 - -
PSGD (KF) 392 369 288 50 79 71 61
K-FAC (1mc) 255 317 420 121 79 71 43
Shampoo 150 83 43 29 73 83 52

16

	Introduction
	Gradient Preconditioning in Deep Learning
	Curvature matrices
	Representations of matrices
	Solvers for preconditioning gradient

	Unified Interface for Gradient Preconditioning in ASDL
	Case Studies with ASDL
	Discussion
	Target gradient preconditioning methods
	Experimental settings
	MLP on MNIST
	ResNet18 and WideResNet on CIFAR-10
	ViT-tiny and MLP-Mixer-base on CIFAR-10

