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Abstract
A number of competing hypotheses have been proposed to explain why small-batch Stochastic
Gradient Descent (SGD) leads to improved generalization over the full-batch regime, with recent
work crediting the implicit regularization of various quantities throughout training. However, to
date, empirical evidence assessing the explanatory power of these hypotheses is lacking. In this
paper, we conduct an extensive empirical evaluation, focusing on the ability of various theorized
mechanisms to close the small-to-large batch generalization gap. Additionally, we characterize
how the quantities that SGD has been claimed to (implicitly) regularize change over the course of
training. By using micro-batches, i.e. disjoint smaller subsets of each mini-batch, we empirically
show that explicitly penalizing the gradient norm or the Fisher Information Matrix trace, averaged
over micro-batches, in the large-batch regime recovers small-batch SGD generalization, whereas
Jacobian-based regularizations fail to do so. This generalization performance is shown to often
be correlated with how well the regularized model’s gradient norms resemble those of small-batch
SGD. We additionally show that this behavior breaks down as the micro-batch size approaches the
batch size. Finally, we note that in this line of inquiry, positive experimental findings on CIFAR10
are often reversed on other datasets like CIFAR100, highlighting the need to test hypotheses on a
wider collection of datasets.

1. Introduction

While small-batch SGD has frequently been observed to outperform large-batch SGD [4, 9, 11, 17,
18, 23–26], the upstream cause for this generalization gap is a contested topic, approached from a
variety of analytical perspectives [4, 5, 14, 25]. Initial work in this field has generally focused on the
learning rate to batch-size ratio [5, 7, 11, 15–17] or on recreating stochastic noise via mini-batching
[3, 9, 18, 22, 25, 27, 28], whereas recent works have pivoted focus on understanding how mini-batch
SGD may implicitly regularize certain quantities that improve generalization [2, 4, 10, 14, 23].

In this paper, we provide a careful empirical analysis of how these competing regularization
theories compare to each other as assessed by how well the prescribed interventions, when applied
in the large batch setting, recover SGD’s performance. Additionally, we study their similarities and
differences by analyzing the evolution of the regularized quantities over the course of training.

Our main contributions are the following:
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Figure 1: Validation Accuracy and Average Micro-batch (|M | = 128) Gradient Norm for CI-
FAR10/100 Regularization Experiments, averaged across runs (plots also smoothed for
clarity). In both datasets, Gradient Norm (GN) and Fisher Trace (FT) Regularization
mimic the average micro-batch gradient norm behavior of SGD during early training and
effectively recover generalization performance (within a small margin of error), whereas
both Average and Unit Jacobian (AJ and UJ) fail to do so.

1. By utilizing micro-batches (i.e. disjoint subsets of each mini-batch), we find that explicitly
regularizing either the average micro-batch gradient norm [2, 4] or Fisher Information Matrix
trace [10] (equivalent to the average gradient norm when labels are drawn from the predictive
distribution, detailed in Section A.2) in the large-batch regime fully recovers small-batch
SGD generalization performance, but using Jacobian-based regularization [14] fails to recover
small-batch SGD performance (see Figure 1).

2. We show that the generalization performance is strongly correlated with how well the tra-
jectory of the average micro-batch gradient norm during training mimics that of small-batch
SGD, but that this condition is not necessary for recovering performance in some scenarios.
The poor performance of Jacobian regularization, which enforces either uniform or fully ran-
dom weighting on each class and example (see Section A.3), highlights that the beneficial
aspects of average micro-batch gradient norm or Fisher trace regularization may come from
the loss gradient’s ability to adaptively weight outputs on the per example and per class basis.

3. We demonstrate that as the micro-batch size approaches the actual batch size, the generaliza-
tion benefits of both successful methods disappear, and that the micro-batch gradient norm
behavior begins to differ significantly from the small-batch SGD case.

2. Prior Work and Preliminaries

In neural network training, the choice of batch size (and learning rate) heavily influence generaliza-
tion. In particular, researchers have found that opting for small batch sizes (and large learning rates)
improve a network’s ability to generalize [5, 7, 11, 15–17] . Yet, explanations for this phenomenon
have long been debated. While some researchers have attributed the success of small-batch SGD to
gradient noise introduced by stochasticity and mini-batching [3, 9, 18, 22, 25, 27, 28], others posit
that small-batch SGD finds “flat minima” with low non-uniformity, which in turn boosts general-
ization [11, 22, 26]. Meanwhile, some works credit the implicit regularization of quantities such as

2



DISENTANGLING THE MECHANISMS BEHIND IMPLICIT REGULARIZATION IN SGD

loss gradient norm, the Jacobian norm (i.e., the network output-to-weights gradient norm), and the
Fisher Information Matrix [2, 4, 10, 14, 23].

Recent works have shown that one can recover SGD generalization performance by training on
a modified loss function that regularizes large loss gradients [2, 4, 23]. While Smith et al. [23] and
Barrett and Dherin [2] expect that training on this modified loss function with large micro-batch
sizes will be unable to recover SGD generalization performance, we empirically verify this is the
case.

To our knowledge, we are the first to introduce the “micro-batch“ terminology to denote com-
ponent disjoint sub-batches used in accumulated mini-batch SGD. This choice was made to avoid
overloading the term “mini-batch“ and thus clarify the work done by Barrett and Dherin [2], Smith
et al. [23]. Note that here and for the rest of this paper, we use Large-Batch SGD as an approxi-
mation for full-batch GD due to the computational constraints of using the full training set on each
update. We additionally leverage the work done by Agarwal et al. [1], who propose the idea of
grafting as a meta-optimization algorithm, though in the paper their focus mostly rests on grafting
adaptive optimization algorithms together, not plain mini-batch SGD. In Appendix A, We discuss
various implicit and explicit regularization mechanisms in more depth.

3. Explicit Regularization And Gradient Norm Trajectory

These aforementioned explicit regularization mechanisms have previously been investigated in lim-
ited empirical settings. To the best of our knowledge, Jastrzebski et al. [10] is the only work that has
directly compared some of these regularization mechanisms, but only did so in the context of im-
proving small-batch performance. Like our work, Geiping et al. [4] is centered on the small-to-large
batch generalization gap, but they do not focus solely on the explicit regularization they propose and
do not include any analysis of the micro-batch gradient norm behavior during training. In this work,
we investigate (i) how these regularizers effect generalization for an array of benchmarks and (ii)
how such performance may correlate with the evolution of the micro-batch gradient norm during
training.

3.1. Experimental Setup

We first focus our experiments on the case of using a ResNet-18 [8], with standard initialization and
batch normalization, on the CIFAR10, CIFAR100, Tiny-ImageNet, and SVHN image classification
benchmarks [12, 13, 19]. Additional experiments on different architectures are detailed in Appendix
D. Besides our small-batch (B = 128) and large-batch (B = 5120) SGD baselines, we also train
the networks in the large-batch regime using (i) average Micro-batch Gradient Norm Regulariza-
tion (GN); (ii) average Micro-batch Fisher Trace Regularization (FT); and (iii) average and unit
Micro-batch Jacobian Regularizations (AJ and UJ) (see Appendix A for mathematical definitions).
Note that for all the regularized experiments, we use a component micro-batch size equal to the
small-batch size (i.e. 128). In order to compare the best possible performance within each experi-
mental regime, we separately tune the optimal learning rate η and optimal regularization parameter
λ independently for each regime.
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Table 1: ResNet18 Test Performance for Regularizer Penalties. Values shown are average test ac-
curacies across two to three different initializations per experiment, with corresponding
confidence intervals.

Experiment CIFAR10 CIFAR100 Tiny-ImageNet SVHN

SB SGD 92.33 (±0.10) 71.01 (±0.27) 39.64 (±0.18) 93.69 (±0.12)
LB SGD 90.00 (±0.11) 66.45 (±0.29) 27.71 (±0.09) 90.37 (±0.33)
GN 91.98 (±0.03) 70.22 (±0.27) 37.78 (±0.07) 92.77 (±0.01)
FT 91.79 (±0.05) 71.19 (±0.16) 40.25 (±0.02) 93.72 (±0.16)
AJ 90.41 (±0.01) 65.95 (±0.33) 22.86 (±0.95) 91.76 (±0.11)
UJ 90.46 (±0.20) 66.41 (±0.06) 26.07 (±0.54) 92.08 (±0.01)

3.2. Results

(i) Average micro-batch Gradient Norm and average Fisher trace Regularization recover SGD
generalization For CIFAR100, Tiny-ImageNet, and SVHN we find that we can fully recover
small-batch SGD generalization performance by penalizing the average micro-batch Fisher trace
and nearly recover performance by penalizing the average micro-batch gradient norm (with an opti-
mally tuned regularization parameter λ, see Figure 1 and Table 1). In CIFAR10, neither penalizing
the gradient norm nor the Fisher trace completely recovers small-batch SGD performance, but rather
come within ≈ 0.3% and ≈ 0.4% (respectively) the small-batch SGD performance and significantly
improves over large-batch SGD. We do not see much consistent performance differences between
penalizing the gradient norm or the Fisher trace, as the Fisher trace regularization performs better in
only three out of the four datasets, which is slightly inconsistent with the result in Jastrzebski et al.
[10] that penalizing the Fisher trace consistently exhibits much better performance than using the
gradient norm.

We additionally find that using the micro-batch gradient norm leads to slightly faster per-
iteration convergence but less stable training (as noted by the tendency for the model to exhibit
random drops in performance), while using the Fisher trace leads to slightly slower per-iteration
convergence but much more stable training (see Figure 1). This behavior may be due to the Fisher
trace’s ability to more reliably mimic the small-batch SGD micro-batch gradient norm behavior
throughout training, whereas penalizing the gradient norm effectively curbs the initial explosion but
collapses to much smaller norm values as training progresses.

(ii) Average and Unit Jacobian regularizations do not recover SGD generalization Ob-
serve in Table 1 that we are unable to match SGD generalization performance with either Jacobian
regularization. As before, this finding also holds true for all analyzed datasets.

(iii) Using different weights for the output associated with each class may be imperative
to recover SGD generalization performance. In the average Jacobian case, we penalize the
squared norm of the matrix-vector product of the Jacobian with equal weighting on every class,
while in the unit Jacobian case we use random weighting on each class on every micro-batch. How-
ever, this weighting is not necessarily equal or uniformly random across each class for the gradient
norm and Fisher trace regularizations, where the implicitly penalized loss-output gradient may be
different on the per example and per class basis. Thus, the noticeable difference in generalization
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performance between regularization methods that weight the Jacobian with the loss-output gradient
and those that do not indicates that the loss-output gradient may be crucial to either applying the
beneficial regularization effect itself and/or stabilizing the training procedure.

4. Discussion & Conclusion

In this paper, we provide a holistic account of how the proposed regularization mechanisms [2, 4, 10,
14, 23] compare to each other in performance and gradient norm trajectory, and additionally show
the limitations of this analytical paradigm for explaining the root cause of generalization. This thus
motivates multiple future lines of work. Our results with regards to the relative poor performance of
the Jacobian-based regularizations somewhat conflict with the results of Lee et al. [14], which shows
positive results on using the unit Jacobian regularization with respect to improving performance
within the same batch-size regime. We attribute this difference to the fact that Lee et al. [14] is not
concerned with cases where the small-to-large batch generalization gap exists, which is our main
focus.

In light of this prior work, more research should be done to disentangle the exact effect that
implicitly regularizing the loss-output gradient has on generalization performance. Next, given the
success of average micro-batch gradient norm and average micro-batch Fisher trace regularization
(especially with small micro-batches), future work should leverage these regularization mechanisms
to investigate the possibility of ameliorating generalization, while improving time efficiency, by
taking advantage of high resource, parallelizable settings. Finally, since our experiments focus on
image datasets, extending our empirical analysis to non-image (e.g., language) datasets and tasks,
as well as more complex model architectures (e.g., transformers), is a worthwhile future effort.

We acknowledge that performance in each experiment could possibly be improved by progres-
sively finer hyperparameter tuning, though we are confident that our core results would continue to
hold in such situations given the extensive hyperparameter searches performed for each experiment.
As a whole, the present research helps to shed light on the mechanisms behind SGD’s generalization
properties through implicit regularization, and offers robust fixes to the generalization issue at high
batch-sizes.
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Appendix A. Implicit and Explicit Regularization Mechanisms (continued)

Setup and Notation We primarily consider the case of a softmax classifier f : Rd → RC (where
C is the number of classes) parameterized by some deep neural network with parameters θ. We
let ℓ(x, y;θ) denote the standard cross entropy loss for example x and label y, and let LB(θ) =
1
|B|

∑
(x,y)∈B ℓ(x, y;θ) denote the average loss over some batch B. Note that throughout this paper,

the terms “batch” and “mini-batch” are used interchangeably to refer to B.

A.1. Average Micro-batch Gradient Norm Regularization

As proposed by Smith et al. [23], we attempt to understand the generalization behavior of mini-
batch SGD by how it implicitly regularizes the norm of the micro-batch gradient, ∥∇LM (θ)∥ for
some micro-batch M ⊆ B. In large-batch SGD, we accomplish this through gradient accumulation
(i.e. accumulating the gradients of many small-batches to generate the large-batch update), and thus
can add an explicit regularizer (described in Geiping et al. [4]) that penalizes the average micro-
batch norm. Formally, for some large-batch B and component disjoint micro-batches M ⊆ B, let
∇θLM (θ) = 1

|M |
∑

(x,y)∈M ∇θℓ(x, y;θ). The new loss function is:

LB(θ) + λ
|M |
|B|

∑
M∈B

∥∇θLM (θ)∥2. (1)

While this quantity can be approximated through finite differences, it can also be optimized directly
by backpropagation using modern deep learning packages, as we do in this paper.

Note that by definition, we can decompose the regularizer term into the product of the Jacobian
of the network and the gradient of the loss with respect to network output. Formally, for some
network f with p parameters, if we let z = f(x;θ) ∈ RC be the model output for some input x and
denote its corresponding label as y, then:

∇θℓ(x, y;θ) = (∇θz)(∇zℓ(x, y;θ)) (2)

Where ∇θz ∈ Rp×C is the Jacobian of the network and the second term is the loss-output
gradient. We explicitly show this equivalence for the comparison made in section A.3.

A.2. Average Micro-batch Fisher Trace Regularization

One noticeable artifact of Equation 1 is its implicit reliance on the true labels y to calculate the
regularizer penalty. Jastrzebski et al. [10] shows that we can derive a similar quantity in the mini-
batch SGD setting by penalizing the trace of the Fisher Information Matrix F, which is given by:

Tr(F) = Ex∼X ,ŷ∼pθ(y|x)[∥∇θℓ(x, ŷ;θ)∥2], (3)

where pθ(y | x) is the predictive distribution of the model at the current iteration and X is the data
distribution. We thus extend their work to the accumulated large-batch regime and penalize an ap-
proximation of the average Fisher trace over micro-batches: if we let L̂M (θ) = 1

|M |
∑

x∈M,ŷ∼pθ(y|x) ℓ(x, ŷ;θ),
then our penalized loss is

LB(θ) + λ
|M |
|B|

∑
M∈B

∥∇θL̂M (θ)∥2. (4)
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The only difference between the expressions in Equation 1 and Equation 4 is that the latter now
uses labels sampled from the predictive distribution, rather than the true labels, to calculate the
regularizer term. As with Equation 1, we can directly backpropagate using this term in our loss
equation.

Like, in equation 2, we can decompose the regularizer term as:

ℓ(x, ŷ;θ) = (∇θz)(∇zℓ(x, ŷ;θ)) (5)

Where the second term is another loss-output gradient.
Jastrzebski et al. [10] observes that models with poor generalization typically show a large

spike in the Fisher Trace during the early phases of training, which they coin as Catastrophic Fisher
Explosion. In Figure 1, we show that this behavior also occurs when looking at the average Micro-
Batch gradient norm.

A.3. Jacobian Regularization

Given the decompositions shown in equations 2 and 5, it is unclear in either case whether the
Jacobian term is the sole source of possible generalization benefit, or if the loss-output gradient is
also needed. To disentangle this effect, we borrow from Lee et al. [14] and use the average and unit
Jacobian regularization losses:

LB(θ) + λ
|M |
|B|

∑
M⊆B

∥Javg(M)∥2, Javg(M) =
1

|M |
∑

(x,y)∈M

(∇θz)(
1

C
1), (6)

LB(θ) + λ
|M |
|B|

∑
M⊆B

∥Junit(M)∥2, Junit(M) =
1

|M |
∑

(x,y)∈M

(∇θz)(u), (7)

where u ∈ RC is randomly sampled from the unit hypersphere (i.e. ∥u∥2 = 1), and u is sam-
pled once per micro-batch. In words, the average Jacobian case penalizes the Jacobian with equal
weighting on every class and every example, while the unit Jacobian case penalizes the Jacobian
with different but random weighting on each class and example. Note that the unit Jacobian penalty
is an unbiased estimator of the Frobenius norm of the Jacobian ∥∇θz∥2F , which is an upper bound
on its spectral norm ∥∇θz∥22 (see Lee et al. [14] for a more detailed theoretical analysis).

Appendix B. Shortcomings and Extensions of Gradient Norm Regularization

B.1. Generalization Failure at Large Micro-Batch Sizes

In both successful regularization regimes, namely the average micro-batch gradient norm and aver-
age fisher trace regularizers, there is an implicit hyperparameter: the size of the micro-batch used
to calculate the regularization term. Note that this hyperparameter is a practical artifact of modern
GPU memory limits, as efficiently calculating higher-order derivatives for large batch sizes is not
feasible in standard autodifferentiation packages. Consequently, gradient accumulation (and the use
of the average micro-batch regularizer, rather than taking the norm over the entire batch) must be
used on most standard GPUs.
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This restriction, however, may actually be beneficial, as Barrett and Dherin [2], Geiping et al.
[4], Smith et al. [23] have noted that they expect the benefits of gradient norm regularizers to break
down when the micro-batch size becomes too large. To test this hypothesis, we return to the ResNet-
18 in CIFAR100 and Tiny-ImageNet settings and increase the micro-batch size to as large as we
could reasonably fit on a single GPU at |M | = 2560 in both the gradient norm and Fisher trace
experiments. Additionally, we run experiments using a VGG11 [21] on CIFAR10, interpolating the
micro-batch size from the small to large regimes. In both settings, we separately tune the learning
rate η and regularization coefficient λ in each experiment to find the best possible generalization
performance in the large micro-batch regimes.

Table 2: Test Performance for ResNet-18 with Increased Micro-Batch Size. Small-batch SGD per-
formances: CIFAR100 = 71.01, Tiny-ImageNet = 39.64.

Dataset GN (|M | = 128) FT (|M | = 128) GN (|M | = 2560) FT (|M | = 2560)

CIFAR100 70.22 (±0.27) 71.19 (±0.16) 64.23 (±0.49) 65.44 (±0.76)
Tiny-ImageNet 37.78 (±0.07) 40.25 (±0.02) 31.96 (±0.56) 37.71 (±0.31)
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Figure 2: Average Micro-batch Gradient Norm for varying micro-batch sizes. In all experimental
regimes, increasing the micro-batch size leads to a worse reconstruction of the SGD av-
erage micro-batch gradient norm behavior, especially in early training.

Table 3: Test Performance for VGG11 (no batch-normalization) in CIFAR10 with Increased Micro-
Batch Size

SB SGD LB SGD GN (|M | = 100) GN (|M | = 1000) GN (|M | = 2500)

78.19 73.90 76.89 (±0.72) 75.19 (±0.10) 75.11 (±0.29)
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Results We successfully show that such hypotheses mentioned in Barrett and Dherin [2],
Geiping et al. [4], Smith et al. [23] hold true: as the micro-batch size approaches the mini-batch size,
both regularization mechanisms lose the ability to recover small-batch SGD performance (see Tables
2 and 3). Additionally, we note that using large micro-batch sizes no longer effectively mimics
the average micro-batch gradient norm behavior of small-batch SGD, thus supporting our claim
that matching this quantity throughout training is of key importance to recovering generalization
performance (Figure 2).

B.2. Sample Micro-batch Gradient Norm Regularization

One potential practical drawback of these gradient-based regularization terms is the relatively high
computation cost needed to calculate the second-order gradients for every component micro-batch.
Instead of penalizing the average micro-batch gradient norm, we can penalize one micro-batch
gradient norm. For some large batch B and fixed sample micro-batch S from batch B, we define the
modified loss function

LB(θ) + λ∥∇θLS(θ)∥2. (8)
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Figure 3: Explicitly regularizing the sample loss gradient norm recovers SGD test accuracy

Results In Figure 3, we plot the final test accuracy (left column) and the average gradient
norm (right column) as a function of λ. We observe that both a larger λ and a smaller micro-batch
size |S| boost test accuracy. Furthermore, we find that with the “optimal” λ and micro-batch size
|S|, the final test accuracy for sample micro-batch gradient norm regularization is close to (and
sometimes better) than the final test accuracy for SGD. Just as we observed with the average Micro-
batch Gradient Norm regularization, generalization benefits diminish as the sample micro-batch
size approaches the mini-batch size. It is worth noting that in some model-dataset combinations,
we observe a slight difference convergence behavior between using the sample micro-batch and the
average micro-batch, which is detailed in appendix D.1.
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Appendix C. Is mimicking SGD Gradient Norm Behavior necessary for
generalization?

As seen in Figure 1, the trajectory of the average micro-batch gradient norm during training, and
its similarity to that of small-batch SGD especially in the early stages of training, is strongly cor-
related with generalization performance. Furthermore, we have observed that models with poor
generalization performance tend to exhibit the characteristic “explosion” during the early phase of
training and quickly plummet to average micro-batch gradient norm values much smaller than seen
in small-batch SGD. That being said, it is not immediately clear whether recreating the micro-batch
norm trajectory of small-batch SGD is necessary for ensuring good generalization performance.

To test this hypothesis, we empirically validate an orthogonal vein of optimization methods for
their ability to close the small-to-large batch generalization gap, and whether they too mimic the
average micro-batch norm trajectory of small-batch SGD.

C.1. External and Iterative Grafting and Normalized Gradient Descent

Inspired by the work of Agarwal et al. [1], we proposed to use gradient grafting in order to con-
trol the loss gradient norm behavior during training. Formally, for any two different optimization
algorithms M,D, the grafted updated rule is arbitrarily:

gM = M(θk), gD = D(θk)

θk+1 = θk − ∥gM∥ gD
∥gD∥

(9)

In this sense, M controls the magnitude of the update step and D controls the direction. We first
propose Iterative Grafting, wherein M(θk) = η∇LM (θk) and D(θk) = ∇LB(θk), where M ∈
B is sampled uniformly from the component micro-batches at every update. In words, at every
update step we take the large batch gradient, normalize it, and then rescale the gradient by the norm
of one of the component micro-batch gradients.

Additionally, we propose External Grafting, where M(θk) = η∇LM (θk′) and D(θk) =
∇LB(θk). Here, we use ∇LB(θk′) to denote the gradient norm at step k from a separate small-
batch SGD training run. We propose this experiment to make a comparison with the Iterative
Grafting case, since here the implicit step length schedule is independent of the current run, while
with Iterative grafting the schedule depends upon the current training dynamics.

Aside from grafting algorithms, which define the implicit step length schedule at every step, we
also consider the situation where the step length is fixed throughout training through normalized
gradient descent (NGD) [6], wherein M(θk) = η and D(θk) = η∇LB(θk).

Table 4: Test Performance for Grafting / NGD Experiments

Dataset Model SB SGD LB SGD EG IG NGD

CIFAR10
ResNet18 92.33 89.99 92.12 92.16 92.10
VGG16 w/Batch-Norm 89.56 86.97 88.65 89.06 89.39

CIFAR100
ResNet18 71.21 66.17 68.3 68.4 66.83
VGG16 w/Batch-Norm 64.26 55.94 59.71 63.48 58.05
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Figure 4: Average Micro-batch Gradient Norm in Grafting Experiments for ResNet-18 (Plots
smoothed for clarity). In both scenarios, irrespective of generalization performance, the
grafting experiments do not mimic the SGD average micro-batch gradient norm behavior.

Results We find that both forms of grafting and NGD can recover the generalization perfor-
mance of SGD in some model-dataset combinations (see Table 4). Namely, though grafting / NGD
seems to work quite well in CIFAR10, no amount of hyperparameter tuning was able to recover the
SGD performance for either model in CIFAR100. That being said, in the CIFAR10 case we see (in
Figure 4) that the grafting experiments (and NGD, not pictured) do not replicate the same average
mini-batch gradient norm behavior of small-batch SGD despite sometimes replicating its perfor-
mance. This thus gives us solid empirical evidence that while controlling the average mini-batch
gradient norm behavior through explicit regularization may aide generalization, it is not the only
mechanism in which large-batch SGD can recover performance.

C.2. Wider Implications

The stark disparity in performance between the CIFAR10 and CIFAR100 benchmarks are of key
importance. These differences may be explained by the much larger disparity between the mid-stage
average micro-batch gradient norm behavior in the CIFAR100 case than in the CIFAR10 case (see
Figure 4). This situation highlights a possible cultural issue within the deep learning community:
there is a concerning trend of papers in the deep learning field that cite desired performance on
CIFAR10, and no harder datasets, as empirical justification for any posed theoretical results [1–
4, 20, 23]. Given the continued advancement of state-of-the-art deep learning models, we argue
that it is imperative that baselines like CIFAR100 and ImageNet are adopted as the main standard
for empirical verification, so that possibly non-generalizable results (as the grafting / NGD results
would have been had we stopped at CIFAR10) do not fall through the cracks in the larger community
(see Appendix D.2 for more information).
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Appendix D. Additional Regularization Experiments

Aside from the main results using a ResNet-18, we additionally ran the regularization experiments
with a VGG11 [21] without batch normalization on CIFAR10. Results are shown below:

Table 5: VGG11 (no batch-normalization) Test Performance for Regularizer Penalties

Dataset SB SGD LB SGD GN FT AJ UJ

CIFAR10 78.19 73.90 77.62 79.10 74.09 N/A

Consistent with our earlier observations (see Section 3), we find that average micro-batch gra-
dient norm and average Fisher trace regularization nearly recover SGD generalization performance,
whereas average Jacobian regularization does not.

D.1. Sample Micro-batch Gradient Norm Regularization (Continued)
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Figure 5: Explicitly regularizing the average loss gradient norm over a sample recovers SGD test
accuracy

We see that switching from using the average micro-batch gradient norm to using a single sam-
ple micro-batch gradient norm as a regularizer does not impact final generalization performance.
However, we do see in the CIFAR100 case that while using the sample-based regularizer is faster
in terms of per iteration wall-clock time, the average-based regularizer converges to an optimal
performance in considerably fewer gradient update steps (Figure 5).

D.2. Limitations of Anticorrelated Perturbed Gradient Descent
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Orvieto et al. [20] proposes a method for improving generalization by injecting spherical Gaus-
sian noise (with variance σ2 as a hyperparameter) at each gradient update step that is anticorrelated
between concurrent time steps, which they term Anti-PGD. They empirically show that on CI-
FAR10, training a ResNet18 in the large-batch regime with Anti-PGD and then shutting off the
noise (to allow for convergence) allows them to beat small-batch SGD generalization performance.

However, when we extended their methodology to the CIFAR100 regime (while removing pos-
sible confounding factors such as momentum), no hyperparameter combination in the large-batch
regime was able to recover SGD generalization performance. This thus represents just one exam-
ple of the possible endemic issue described in C.2. Hyperparameter combinations and final test
accuracy are show below.

Table 6: ResNet18 w/Anti-PGD on CIFAR100 (SB SGD Test Accuracy = 71.21). No hyperparam-
eter combination comes close to recovering SGD performance.

Learning Rate (η) σ2 Test Accuracy

0.5 0.01 67.54
0.5 0.001 65.44
0.1 0.01 64.55
0.1 0.001 64.90
0.05 0.01 62.52
0.05 0.001 62.78
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