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Abstract
This paper settles an open and challenging question pertaining to the design of simple and optimal
high-order methods for solving smooth and monotone variational inequalities (VIs). A VI involves
finding x? ∈ X such that 〈F (x), x − x?〉 ≥ 0 for all x ∈ X and we consider the setting in
which F : Rd 7→ Rd is smooth with up to (p − 1)th-order derivatives. For p = 2, the cubic
regularized Newton’s method was extended to VIs with a global rate of O(ε−1) [37] while another
second-order method was proposed and achieved an improved rate of O(ε−2/3 log log(1/ε)), but
this method required a nontrivial line search procedure as an inner loop. High-order methods
based on similar search procedures have been further developed and shown to achieve a rate of
O(ε−2/(p+1) log log(1/ε)) [5, 21, 27]. However, such procedures require fine tuning parameters
and might be computationally prohibitive in practice [40], leaving the problem of developing a
simple and optimal high-order VI method indeed open in the optimization theory. In this paper,
we propose a pth-order method that does not require any search procedure and provably converges
to a weak solution at a rate of O(ε−2/(p+1)). We prove that our pth-order method is optimal in
the monotone setting by establishing a lower bound of Ω(ε−2/(p+1)) under a standard linear span
assumption. A version with restarting attains a global linear and local superlinear convergence
rate for smooth and strongly monotone VIs. Furthermore, our method achieves a global rate of
O(ε−2/p) for solving smooth and non-monotone VIs satisfying the Minty condition. The restarted
version again attains a global linear and local superlinear convergence rate if the strong Minty
condition is satisfied.

1. Introduction

Let Rd be a finite-dimensional Euclidean space and let X ⊆ Rd be a closed, convex and bounded
set with a diameter D > 0. Given that F : Rd 7→ Rd is a continuous operator, a fundamental
assumption in optimization theory, generalizing convexity, is that F is monotone:

〈F (x)− F (x′), x− x′〉 ≥ 0, for all x, x′ ∈ Rd.

Another useful assumption in this context is that F is (p− 1)th-order L-smooth; in particular, that it
has Lipschitz-continuous (p− 1)th-order derivative (p ≥ 1) in the sense that there exists a constant
L > 0 such that

‖∇(p−1)F (x)−∇(p−1)F (x′)‖op ≤ L‖x− x′‖, for all x, x′ ∈ Rd. (1)

With these assumptions, we can formulate the main problem of interest in this paper—the Minty
variational inequality problem [30]. This consists in finding a point x? ∈ X such that

〈F (x), x− x?〉 ≥ 0, for all x ∈ X . (2)
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The solution to Eq. (2) is referred to as a weak solution to the variational inequality (VI) correspond-
ing to F and X [13]. By way of comparison, the Stampacchia variational inequality problem [20]
consists in finding a point x? ∈ X such that

〈F (x?), x− x?〉 ≥ 0, for all x ∈ X , (3)

and the solution to Eq. (3) is called a strong solution to the VI corresponding to F and X . In the
setting where F is continuous and monotone, the solution sets of Eq. (2) and Eq. (3) are equivalent.
However, these two solution sets are different in general and a weak solution needs not exist when
a strong solution exists. In addition, computing an approximate strong solution involves a higher
computational burden than finding an approximate weak solution [7, 32, 33].

VIs capture a wide range of problems in optimization theory and beyond, including saddle-
point problems and models of equilibria in the game-theoretic settings [9, 22, 45]. Moreover, the
challenge of designing solution methods for VIs with provable worst-case bounds has been a cen-
tral topic during several past decades; see [13, 19]. These foundations have been inspirational
to machine learning researchers in recent years, where general saddle-point problems have found
applications, including generative adversarial networks (GANs) [16] and multi-agent learning in
games [6, 29]. Some of these applications in ML induce a non-monotone structure, with represen-
tative examples including the training of robust neural networks [28] or robust classifiers [44].

Building on seminal work in the context of high-order optimization [2, 3], we tackle the chal-
lenge of developing pth-order methods for VIs via an inexact solution of regularized subproblems
based on a (p−1)th-order Taylor expansion of F . Accordingly, we make the following assumptions
throughout this paper.

A1. F : Rd 7→ Rd is (p− 1)th-order L-smooth.

A2. The subproblem based on a (p− 1)th-order Taylor expansion of F and a convex and bounded
set X can be computed approximately in an efficient manner (see Section ?? for details).

For the first-order VI methods (p = 1), [35] has proved that the extragradient (EG) method [1, 23]
converges to a weak solution with a global rate of O(ε−1) if F is monotone and Eq. (1) holds.
There are other methods that achieve the same global rate, including forward-backward splitting
method [46], optimistic gradient (OG) method [24, 31, 43] and dual extrapolation method [38]. All
these above methods match the lower bound of [41] and are thus optimal.

Comparing to first-order counterparts, the investigations of second-order and high-order meth-
ods (p ≥ 2) are rare, as exploiting high-order derivative information is much more involved for
VIs [34, 37]. Aiming to fill this gap, some recent works studied high-order extension of first-order
VI methods [5, 21, 27]. These extensions could attain a rate ofO(ε−2/(p+1) log log(1/ε)) but require
nontrivial line search procedures at each iteration. These line search procedures require fine tuning
parameters and can be computationally prohibitive from a practical viewpoint. Thus, the problem
of designing a simple and optimal high-order method remains open. Indeed, [40, Page 305] noted
the difficulty of removing the line search procedure without sacrificing the rate of convergence and
highlighted this as an open and challenging question. We summarize the problem as follows:

Can we design a simple and optimal pth-order VI method without line search?

In this paper, we present an affirmative answer to this problem by identifying a pth-order method
that achieves a global rate ofO(ε−2/(p+1)) while dispensing entirely with the line search inner loop.
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The core idea of the proposed method is to incorporate a simple and elegant adaptive strategy into a
straightforward high-order generalization of dual extrapolation method.

There are three main reasons why we choose the dual extrapolation method as a base algorithm
for our high-order methods. First, the dual extrapolation method has its own merit as summarized
in [38] and the first second-order VI method with a global convergence rate of O(ε−1) [37] was
developed based on the dual extrapolation step. In this context, our method can be interpreted as
a simplification and generalization of this method. Second, the dual extrapolation step is known
as an important conceptual algorithmic component in the optimization literature and there exists a
close relationship between extrapolation and acceleration in the context of first-order methods for
smooth convex optimization [25, 26]. This is different from the EG method which is in fact an
approximation proximal point method [31]. Thus, it would deepen our understanding of the dual
extrapolation step if we can design the simple and optimal high-order VI method based on this
scheme. Finally, the multi-agent/game-theoretical online learning is a natural application of the VI
methods. In this context, the dual extrapolation method outperforms the EG method in some certain
aspects; indeed, one of the common performance guarantee for measuring the algorithm is no-
regret. It is well known that the dual extrapolation method is a no-regret learning algorithm [29]. In
contrast, the EG method was recently shown to be not a no-regret learning algorithm [15]. Although
it remains unclear how to study high-order methods using the online learning perspective, we believe
that it is worth developing the high-order dual extrapolation methods for equilibrium computation.

Contributions. Our contribution can be summarized as follows:

1. We present a new pth-order method for solving smooth and monotone VIs where F has a
Lipschitz continuous (p− 1)th-order derivative and X is convex and bounded. We prove that
the number of calls of subproblem solvers required by our method to find an ε-weak solution
is bounded by

O

((
LDp+1

ε

) 2
p+1

)
.

We prove that our method is optimal by establishing the matching lower bound under a linear
span assumption. Moreover, we present a restarted version of our method for solving smooth
and strongly monotone VIs, i.e., there exists a constant µ > 0 such that

〈F (x)− F (x′), x− x′〉 ≥ µ‖x− x′‖2, for all x, x′ ∈ Rd.

We show that the number of calls of subproblem solvers required to find x̂ ∈ X satisfying
‖x̂− x?‖ ≤ ε is bounded by

O

(
(κDp−1)

2
p+1 log2

(
D

ε

))
,

where κ = L/µ refers to the condition number of F . The restarted version also achieves local
superlinear convergence for the case of p ≥ 2.

2. We show how to modify our framework such that it can be used for solving smooth and non-
monotone VIs satisfying the so-called Minty condition (see Definition 5). We also note that
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a line search procedure is not required. We prove that the number of calls of subproblem
solvers to find an ε-strong solution is bounded by

O

((
LDp+1

ε

) 2
p

)
.

The restarted version is developed for solving smooth and non-monotone VIs satisfying the
strong Minty condition (see Definition 7). We show that the number of calling subproblem
solvers required to find x̂ ∈ X satisfying ‖x̂− x?‖ ≤ ε is bounded by

O

(
max{(κMintyD

p−1)
2
p , (κMintyD

p−1)
2

p+1 } log2

(
D

ε

))
,

where κMinty = L/µMinty refers to the Minty condition number of F . In addition, the restarted
version of our method achieves local superlinear convergence for the case of p ≥ 2.

2. Preliminaries and Technical Background

The regularity conditions that we consider for an operator F : Rd 7→ Rd are as follows.

Definition 1 F is kth-order L-smooth if ‖∇(k)F (x)−∇(k)F (x′)‖ ≤ L‖x− x′‖ for all x, x′.

Definition 2 F is µ-strongly-monotone if 〈F (x) − F (x′), x − x′〉 ≥ µ‖x − x′‖2 for all x, x′. If
µ = 0, we recover the definition of monotonicity for a continuous operator.

Assumption 3 The following statements hold true: (i) F : Rd 7→ Rd is (p− 1)th-order L-smooth;
(ii) X is closed, convex and bounded with a diameter D > 0.

As for the boundedness condition for X , it is standard in the VI literature [13]. This condition not
only guarantees the validity of the most natural optimality criterion in the monotone setting—the gap
function [35, 38]—but additionally it is satisfied in a wide range of real-world applications [13]. On
the other hand, there is a line of works focusing on relaxing the boundedness condition via appeal
to other notions of approximate solutions [7, 32–34]. For simplicity, we retain the boundedness
condition and leave the analysis for the cases with unbounded constraint sets to future work.

Under monotonicity, it is well known that any ε-approximate strong solution is an ε-approximate
weak solution but the reverse does not hold in general. These definitions motivate the use of a gap
function, GAP(·) : X 7→ R+, defined by GAP(x̂) = supx∈X 〈F (x), x̂− x〉 with which we measure
the optimality of a point x̂ ∈ X output by various iterative solution methods.

Definition 4 A point x̂ ∈ X is an ε-weak solution to the monotone VI corresponding to F : Rd 7→
Rd and X ⊆ Rd if we have GAP(x̂) ≤ ε. If ε = 0, then x̂ ∈ X is a weak solution.

In the strongly monotone setting, we let µ > 0 denote the modulus of strong monotonicity for F .
Under Assumption 3, we define κ := L/µ as the generalized condition number of F .

We also study the case in which F is non-monotone but satisfies the (strong) Minty condition.

Definition 5 The VI corresponding to F : Rd 7→ Rd and X ⊆ Rd satisfies the Minty condition if
there exists x? ∈ X such that 〈F (x), x− x?〉 ≥ 0 for all x ∈ X .
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Algorithm 1 Perseus(p, x0, L, T , opt)
Input: order p, initial point x0 ∈ X , parameter L, iteration number T and opt ∈ {0, 1, 2}.
Initialization: set s0 = 0d ∈ Rd.
for k = 0, 1, 2, . . . , T do

STEP 1: If xk ∈ X is a solution of the VI, then stop.
STEP 2: Compute vk+1 = argmaxv∈X {〈sk, v − x0〉 − 1

2‖v − x0‖
2}.

STEP 3: Compute xk+1 ∈ X such that Eq. (6) holds true.
STEP 4: Compute λk+1 > 0 such that 1

20p−8 ≤
λk+1L‖xk+1−vk+1‖p−1

p! ≤ 1
10p+2 .

STEP 5: Compute sk+1 = sk − λk+1F (xk+1).
end for

Output: x̂ =


x̃T = 1∑T

k=1 λk

∑T
k=1 λkxk, if opt = 0,

xkT for kT = argmin1≤k≤T ‖xk − vk‖, else if opt = 1,
xT , otherwise.

Accordingly, we define the residue function RES(·) : X 7→ R+ given by

RES(x̂) = sup
x∈X
〈F (x̂), x̂− x〉, (4)

which measures the optimality of a point x̂ ∈ X achieved by iterative solution methods.

Definition 6 A point x̂ ∈ X is an ε-strong solution to the non-monotone VI corresponding to
F : Rd 7→ Rd and X ⊆ Rd if we have RES(x̂) ≤ ε. If ε = 0, then x̂ ∈ X is a strong solution.

Proceeding a step further, we define the strong Minty condition and define κMinty := L/µMinty to be
the Minty condition number of F if the VI satisfies the µMinty-strong Minty condition.

Definition 7 The VI corresponding to F : Rd 7→ Rd and X ⊆ Rd satisfies the µMinty-strong Minty
condition if there exists x? ∈ X such that 〈F (x), x− x?〉 ≥ µMinty‖x− x?‖2 for all x ∈ X .

There are many application problems that can be formulated as non-monotone VIs satisfying (strong)
Minty condition, including product pricing [8, 12, 14] and competitive exchange economies [4].

3. Our Method

We summarize our pth-order method, which we denote as Perseus(p, x0,L, T , opt), in Algorithm 1.
Its major novelty lies in an adaptive strategy used for updating λk+1 (see Step 4). This modification
is simple yet important. It serves as the key for obtaining a global rate of O(ε−2/(p+1)) (monotone)
and O(ε−2/p) (non-monotone with the Minty condition) under Assumption 3. Our methods also
allow the subproblem to be solved inexactly and we give options for choosing the type of outputs.

We remark that Step 3 resorts to the computation of an approximate strong solution to the VI in
which we define Fvk+1

(x) as the sum of a high-order polynominal and a regularization term:

Fvk+1
(x) = F (vk+1)+ . . .+ 1

(p−1)!∇
(p−1)F (vk+1)[x−vk+1]

p−1+ 5L
(p−1)!‖x−vk+1‖p−1(x−vk+1),

where we write the VI of interest in the subproblem as follows:

Find xk+1 ∈ X such that 〈Fvk+1
(xk+1), x− xk+1〉 ≥ 0 for all x ∈ X . (5)
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Algorithm 2 Perseus-restart(p, x0, L, σ, D, T , opt)
Input: order p, initial point x0 ∈ X , parameters L, σ,D, iteration number T and opt ∈ {0, 1, 2}.

Initialization: set Tinner =


d( 2p+1(5p−2)

p!
LDp−1

σ )
2

p+1 e, if opt = 0,

d( 2p+2(5p+1)
p!

LDp−1

σ )
2
p +

(
2p+5

p!
LDp−1

σ

) 2
p+1 e, elseif opt = 1,

1, otherwise.
for k = 0, 1, 2, . . . , T do

STEP 1: If xk ∈ X is a solution of the VI, then stop.
STEP 2: Compute xk+1 = Perseus(p, xk, L, Tinner,opt).

end for
Output: xT+1.

Since Fvk+1
is continuous andX is closed, convex and bounded, Harker and Pang [19, Theorem 3.1]

guarantees that a strong solution to the VI in Eq. (5) exists.
In the monotone setting, the VI in Eq. (5) is monotone and thus computationally tractable [10],

with the following approximation condition:

sup
x∈X
〈Fvk+1

(xk+1), xk+1 − x〉 ≤ L
p!‖xk+1 − vk+1‖p+1. (6)

Indeed, if p = 1, we have that ∇Fvk+1
(x) = L · Id×d that is positive semidefinite for all x ∈ Rd

where Id×d ∈ Rd×d is an identity matrix. Otherwise, we obtain from Assumption 3 that

∇Fvk+1
(x) � ∇F (x) + 4L

(p−1)!‖x− vk+1‖p−1Id×d + L
(p−2)!‖x− vk+1‖p−2(x− vk+1)(x− vk+1)

>.

In the non-monotone setting, the VI in Eq. (5) is not necessarily monotone and the computation of
an approximate strong solution is intractable in general [11]. However, we note that Fvk+1

is the
sum of a high-order polynomial and a regularization term; this special structure might lend itself to
efficient numerical methods. In optimization setting, this problem can be solved efficiently [17, 18].

Restarting. We summarize the restarted version of our pth-order method in Algorithm 2. This
method, which we refer to as Perseus-restart(p, x0, L, σ, D, T , opt), combines Algorithm 1 with
a restart scheme [36, 39, 40, 42]. Intuitively, the restart scheme stops an algorithm when a criterion
is satisfied and then restarts the algorithm with an new input. At each iteration of Algorithm 2, we
use xk+1 = Perseus(p, xk, L, t, opt) as a subroutine. In other words, we restart Perseus every
t ≥ 1 iterations and take advantage of average iterates or best iterates to generate xk+1 from xk.
Moreover, the choice of t can be specialized to different settings and/or different type of convergence
guarantees. Indeed, we set opt = 0 for the strong monotone setting, opt = 1 for the non-monotone
setting satisfying the strong Minty condition and opt = 2 for a local convergence guarantee.
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