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Abstract
The family of Stochastic Gradient Methods with Polyak Step-size offers an update rule that allevi-
ates the need of fine-tuning the learning rate of an optimizer. Recent work [5] has been proposed
to introduce a slack variable, which makes these methods applicable outside of the interpolation
regime. In this paper, we combine preconditioning and slack in an updated optimization algorithm
to show its performance on badly scaled and/or ill-conditioned datasets. We use Hutchinson’s
method to obtain an estimate of a Hessian which is used as the preconditioner.

1. Introduction

In this paper we consider a finite-sum optimization problem
w∗ ∈ argminw∈Rd{f(w) := 1

n

∑n
i=1 fi(w)}, (1)

where w ∈ Rd is the weight parameter and each fi : Rd → R is a smooth and twice differentiable
objective function. Problems of this structure constitute one of the core parts of machine learning
where it is known as Empirical Risk Minimization. The loss function fi(w) computes the difference
between the prediction of a model with weights parameters w and a target value. The objective is to
then minimize the average loss f(w) = 1

n

∑n
i=1 fi(w) over a given dataset with n elements.

Stochastic Gradient Descent. Since this minimization problem can be particularly complicated to
solve due to complexity of the dataset or the type of loss function, it attracts substantial research
every year. One of the most basic optimization methods to solve this problem is Stochastic Gradient
Descent (SGD) [2, 11] which despite its simplicity remains one of the most often used algorithms
for this purpose. SGD updates the weight parameter w in a loop as following:

wt+1 = wt − γ∇fi(wt), (2)
where∇fi(wt) is the gradient of a loss function on a mini-batch {i} of a dataset at point wt, γ is the
step-size (or learning rate) of the update and t is the iteration counter. Using mini-batches of a large
dataset to compute the gradient significantly helps to reduce the the time needed for convergence to
an optimal point w∗. However, every loss function and dataset combination requires special tuning
of a step-size γ to find a minimum, which turns γ into a hyperparameter. This issue was one of the
motivations behind methods with adaptive learning rate, where γ is replaced by an expression which
does not need a fine-tuning process. One of the recent representatives of this family of methods is
Stochastic Gradient Descent with a Polyak Step-size (SPS) [5, 8–10].
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1.1. Notation and Assumptions.

For a positive definite matrix B ∈ Rd×d, we can endow the primal space w ∈ E ⊆ Rd and g ∈
E∗ ⊆ Rd by the conjugate Euclidean norms: ∥w∥B = ⟨Bw,w⟩1/2 and ∥g∥B−1 =

〈
g,B−1g

〉1/2,
where ∇f(w) ∈ E∗ and ∇2f(w) ∈ E∗. The operator ⊙ is defined as a component-wise product
between two vectors, also known as the Hadamard product. We use diag(v) as a diagonal matrix of
a given vector v and a vector diagonal(H) ∈ Rd as the diagonal of a matrix H ∈ Rd×d.

Assumption 1.1

We assume that the interpolation condition holds for a set of functions {fi(w)}ni=1 with a
non-negative loss functions, fi(w) ≥ 0, when

∃w∗ ∈ Rd s.t. fi(w
∗) = 0 ∀i ∈ {1, 2, . . . , n}. (3)

1.2. Related Work

If we assume that the interpolation condition holds, then we can solve (1) by sampling i ∈ {1, . . . , n}
i.i.d at each iteration t and then solving the nonlinear equation

wt+1 = argminw∈Rd∥w − wt∥2 s.t. fi(w) = 0. (4)
While the above projection might have a closed form solution for some simple loss functions, for
most nonlinear models like Deep Neural Networks (DNNs) there is no closed-form solution of (4).
So instead of solving (4) exactly, we can linearize the fi(w) around the current iterate wt to obtain

wt+1 = argminw∈Rd∥w − wt∥2 s.t. fi(w
t) + ⟨∇fi(wt), w − wt⟩ = 0. (5)

• SGD with Polyak Step-size (SPS). Vanilla SPS is a method with an adaptive learning rate defined
as γt =

fi(wk)
∥∇fi(wk)∥2

. It requires only the stochastic gradient and the function at the current iterate.
Conveniently enough this update serves as an exact closed-form solution for (5).

• Adding Slack. Outside of the interpolation regime there might not exist a solution for (4). So
instead of trying to set all losses functions to zero, we can instead try to make them all small by
minimizing a slack variable as follows

minw∈Rd,s≥0 s s.t. fi(w) ≤ s, for i = 1, . . . , n, (6)

minw∈Rd,s≥0 s2 s.t. fi(w) ≤ s, for i = 1, . . . , n, (7)
which are referred to as L1 and L2 slack minimization [5], respectively. One can note that the
goal of this method is to force s to be as small as possible which allows to solve problems where
the interpolation assumption does not hold or the model is under-parameterized.

• SPS with Slack. In a recent work [5] a new variant of SPS was proposed which samples a single
inequality in (6) or (7), linearizes that inequality, and solves the following problem iteratively

wt+1, st+1 = argminw∈Rd,s≥0
1
2∥w − wt∥2 + 1

2(s− st)
2 + λs,

s.t. fi(wt) + ⟨∇fi(wt), w − wt⟩ ≤ s, (8)
for (6), or

wt+1, st+1 = argminw∈Rd,s∈R ∥w − wt∥2 + (s− st)
2 + λs2,

s.t. fi(wt) + ⟨∇fi(wt), w − wt⟩ ≤ s, (9)
for (7), which are referred to as SPSL1 and SPSL2, respectively. The slack parameter λ > 0
controls the trade-off between finding a small slack variable s, and not moving too far from the
previous iterate. The closed-form solutions to (8) and (9) are given in [5].
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• Preconditioning. Data can be badly scaled and/or ill-conditioned and preconditioning is one
way to improve the convergence speed of algorithms. Algorithms that take advantage of precon-
ditioning have a generic update rule as following,

wt+1 = wt − γtD̂
−1
t ∇fi(wt), (10)

where D̂t ∈ Rd×d is an invertible positive definite matrix. A textbook example of a method that
utilizes this technique is Newton’s method where D̂t = ∇2F (wt) and γt = 1. More recent and
practical methods include AdaHessian, Adagrad and OASIS [4, 7, 12]. These methods incorpo-
rate curvature of the loss function via adaptive estimates of the Hessian. They use Hutchinson’s
method (described later in detail) to obtain an estimate of the Hessian diagonal.

1.3. Contributions

Here we combine preconditioning and variants of slack regularized SPS methods. We then demon-
strate that these new preconditioned methods perform well on badly scaled and ill-conditioned data.
• Updated SPS. We extend the SPS methods and present 3 updated algorithms PSPS, PSPSL1

and PSPSL2 which use Hutchinson’s method to precondition search directions and include the
scaling of Polyak step-size with a weighted Euclidean norm. Closed-form updates to our methods
are described later.

• PyTorch Implementation. We develop practical variants of our methods as PyTorch optimizers
and make the code publicly available at our GitHub repository1.

• Empirical Results. Several experiments are conducted in 2 different settings to compare our
results to SGD, Adam and to variants of SPS that are not applying any preconditioning techniques.
We demonstrate the proposed algorithms exhibit noticeable improvements on badly scaled data.

2. Diagonal Preconditioning

Hutchinson’s method. Hutchinson’s method [6] is used to estimate the diagonal of the Hessian
matrix. To compute this estimate, the Hutchinson method uses only a few Hessian-vector products,
which in turn can be computed efficiently using backpropagation [3]. Indeed, the product of a
Hessian matrix H = ∇2f(w) and a vector z can be computed through a directional derivative
of the gradient since d

dt ∇f(w + tz)|t=0 = Hz. The Hutchinson’s method uses a Hessian-vector
products to estimate the diagonal via diagonal(H) = E[z⊙ (Hz)], where z is a random vector with
Rademacher distribution2 or a normal distribution, see [1] or Lemma 4 in the appendix. Using this
identity, we estimate the Hessian diagonal from a given D0 by sampling a vector z at each iteration,
and iteratively updatie our estimate using a weighted average as follows,

Dt = βDt−1 + (1− β) diag(z ⊙Hz), (11)
where β ∈ (0, 1) is a momentum parameter and D0 =

1
m

∑m
i=1 diag(zi ⊙Hizi), where Hi denotes

a Hessian at the initial point w0 of a randomly sampled batch. Finally, to ensure that Dt remains
Positive Definite, despite possible non-convexity of the loss functions, we use truncation and keep
only absolute values of elements as follows (D̂t)i,i = max{α, |Dt|i,i}.

1. https://github.com/fxrshed/ScaledSPS.
2. zi ∈ {−1,+1} with equal probability.
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3. Preconditioning SPS methods

Here we present our new preconditioned SPS methods. To develop each of these new methods, we
change the norm in the projection to a weighted norm based on the preconditioning matrix H ≻ 0.
For instance the PSPS (Preconditioned SPS) is given in the next lemma.
Lemma 1 (PSPS) Let Bt ≻ 0 for any t ≥ 0. Then the iterative update of the following problem

wt+1 = argminw∈Rd
1
2∥w − wt∥2Bt

s.t. fi(wt) + ⟨∇fi(wt), w − wt⟩ = 0

is given by
wt+1 = wt − fi(wt)

||∇fi(wt)||2
B−1
t

B−1
t ∇fi(wt). (12)

We can use the same trick for introducing a preconditioner into the slack based methods.
Lemma 2 (PSPS with L1 Slack - (PSPSL1)) Let Bt ≻ 0 for any t ≥ 0 and µ, λ > 0. Then the
closed-form update for the following problem

wt+1, st+1 = argminw∈Rd,s≥0

1

2
∥w − wt∥2Bt

+ µ(s− st)
2 + λs

s.t. fi(wt) + ⟨∇fi(wt), w − wt⟩ ≤ s, (13)

is given by γL1t =
(fi(wt)−st+

λ
2µ )+

1
2µ+∥∇fi(wt)∥2

B−1
t

, γt = min{γL1t , fi(wt)
∥∇fi(wt)∥2

B−1
t

}, wt+1 = wt − γtB
−1
t ∇fi(wt),

st+1 = (st − 1
2µ(λ + γL1t ))+. Here slack parameter λ forces s to be closer to 0 while µ does not

allow st+1 to be far from st.

Lemma 3 (PSPS with L2 Slack - (PSPSL2)) Let Bt ≻ 0 for any t ≥ 0 and µ, λ > 0. Then the
closed form update for the following problem

wt+1, st+1 = argminw∈Rd,s∈R∥w − wt∥2Bt
+ µ(s− st)

2 + λs2

s.t. fi(wt) + ⟨∇fi(wt), w − wt⟩ ≤ s, (14)

is given by wt+1 = wt − (fi(wt)−µλ̂st)+
λ̂+∥∇fi(wt)∥2

B−1
t

B−1
t ∇fi(wt), st+1 = λ̂(µst +

(fi(wt)−µλ̂st)+
λ̂+∥∇fi(wt)∥2

B−1
t

), where

λ̂ = 1
µ+λ .

4. Numerical Experiments

By combining methods from Section 3 with Hutchinson’s preconditioning, such that Bt = D̂t, we
get our new methods PSPS, PSPSL1 and PSPSL2. In this section, we present our experiments on
binary classification problem with logistic regression and non-linear least squares loss functions.
We selected these settings to demonstrate the performance of our methods on both convex and non-
convex environments. We compare our results to original SPS, SPSL1, SPSL2, SGD, and Adam. All
experiments were run with 5 different seeds using PyTorch 1.11.0.
Loss Functions. Let {(xi, yi)}ni=1 be our dataset, where xi ∈ Rd and yi ∈ {−1,+1}. Logistic re-
gression is defined as fLogReg(w) =

1
n

∑n
i=1 log(1+exp(−yixTi w)) while non-linear least squares

is given by fNLLSQ(w) =
1
n

∑n
i=1(yi − 1/(1 + exp(−xTi w)))2, where yi ∈ {0, 1}.

Binary Classification on LibSVM Datasets. We test our methods on 2 binary classification
datasets from LibSVM3, namely mushrooms and colon-cancer. To simulate badly scaled data
we introduce scaled version of each datasets where its columns are multiplied by a vector e =
{exp(xi)}di=1 where xi is generated from a uniform distribution on the interval [−k, k]. For com-
parison, we also train SGD and Adam with a constant step-size.

3. https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/
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(a) colon-cancer original

(b) colon-cancer badly scaled

(c) mushrooms original

(d) mushrooms badly scaled
Figure 1: Performance comparison of PSPSL1 and PSPSL2 to non-scaled versions of SPS, SGD

and Adam on original and badly scaled datasets. All methods are trained on Logistic
Regression. In badly scaled cases the scaling factor k = 3.

5. Conclusion and Future work

In this paper we studied the effect of preconditioning on the family of SPS(Stochastic Gradient
Descent with Polyak Step-size) methods. We showed modified update rules PSPS, PSPSL1, PSPSL2
in Section 3. In our solution a new parameter µ is introduced which helps to control the step
direction of slack s. Experiments were conducted in both convex and non-convex settings with 3
different datasets.
Future work. This paper lacks theoretical analysis of our proposed methods which can be done as
a follow up research work. On top of that, it is highly encouraged to extend experiments to a realm
of Deep Neural Networks.
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Appendix A. Derivation of solutions

Lemma 4 Let I ∈ Rd×d be the identity matrix. Let H ∈ Rd×d and let z ∈ Rd be a random vector
with a distribution such that

E[zz⊤] = I. (15)

It follows that
diagonal(H) = E [z ◦Hz] . (16)

Furthermore if z has Rademacher or a normal distribution, then (15) holds.

Proof Taking expectation and expanding the Hadamard product we have that

E [z ⊙ (Hz)] = E

∑
i

zi(
∑
j

Hijzj)ei

 =
∑
i

∑
j

HijE[zjzi]ei (17)

Since E[zz⊤] = I we have that

E[zjzi] = δij =

{
1 if i = j

0 if i ̸= j.

Using the above in (18) we have that
E[z ⊙ (Hz)] =

∑
i

Hiiei (18)

which is the diagonal of the Hessian matrix.
Let z be a Rademacher random variable. That is

zi =

{
1 with probability 1

2

−1 with probability 1
2

Thus for i, j ∈ {1, . . . , d} and i ̸= j, we have that

E[zi] =
1

2
× 1− 1

2
× 1 = 0

E[z2i ] =
1

2
× 1 +

1

2
× 1

E[zizj ] = E[zi]E[zj ] = 0.

The same result follows for z ∈ N (0, 1) since by definition E[zi] = 0 and E[z2i ] = 1.

A.1. Proof of Lemma 1

Proof
Let

w∗ = arg min
w∈Rd

1

2
∥w − wt∥2Bt

s.t. fi(wt) + ⟨∇fi(wt), w − wt⟩ = 0.

To simplify notation, we denote that

a =
1√
2
(w − wt),

Then,
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min
1

2
||a||2Bt

s.t. fi(wt) + ⟨∇fi(wt), a⟩ = 0.

We introduce λ, and let L = 1
2 ||a||

2
Bt

+ λ(fi(wt) + ⟨∇fi(wt), a⟩), taking the partial derivation
with respect to a and λ ,

∂L

∂a
= Bta+ λ∇fi(wt) = 0

∂L

∂λ
= fi(wt) + ⟨∇fi(wt), a⟩ = 0.

To solve these equations, we get
a = −λB−1

t ∇fi(wt)

λ =
fi(wt)

∥∇fi(wt)∥2B−1
t

.

Finally,

ŵ = wt −
fi(wt)

∥∇fi(wt)∥2B−1
t

B−1
t ∇fi(wt).

A.2. Proof of Lemma 2

Proof We can rewrite the slack part of the objective function in (13) as

λs+ µ(s− st)
2 =

1

2
· 2µ

(
s− st +

λ

2µ

)2

+ constants w.r.t w and s. (19)

Dropping constants independent of s and w and let s0 = st − λ
2µ we have that () is equivalent to

solving
wt+1, st+1 = argminw∈Rd,s≥0∥w − wt∥2Bt

+ 2µ(s− s0)2

fi(wt) + ⟨∇fi(wt), w − wt⟩ − (s− s0) ≤ s0

s ≥ 0. (20)

(1) If s0 ≥ fi(wt) holds then the solution is simply (wt+1, st+1) = (wt, s
0).

(2) If s0 ≤ fi(wt). And at least one of the inequality constraints must be active at the optimal point
as the problem is an L2 projection onto the intersection of two halfspace.
(i) If the constraints fi(wt) + ⟨∇fi(wt), w − wt⟩ = s is active, and let w − wt = α, s − s0 = β,
then our problem reduces to

αt+1, βt+1 = argminw∈Rd,s≥0∥α∥2Bt
+ 2µβ2

fi(wt) + ⟨∇fi(wt), α⟩ − β = s0

− s0 − β ≤ 0 (21)
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Let L = ∥α∥2Bt
+2µβ2+ θ(fi(wt)+ ⟨∇fi(wt), α⟩−β− s0)+γ(−s0−β), and take the derivative

with respect to α, β. And get KKT conditions:

∂L
∂α = 2Btα+ θ∇fi(wt) = 0
∂L
∂β = 4µβ − θ − γ = 0

γ ≥ 0

fi(wt) + ⟨∇fi(wt), α⟩ − β − s0 = 0

γ(−s0 − β) = 0,

(22)

which is equivalent to 

α = − θB−1
t ∇fi(wt)

2

β = θ+γ
4µ

θ =
4µ(fi(wt)− γ

4µ
−s0)

1+2µ∥∇fi(wt)∥2
B−1
t

γ ≥
−2s0(2µ∥∇fi(wt)∥2

B−1
t

)−2fi(wt)

∥∇fi(wt)∥2
B−1
t

γ ≥ 0.

(23)

So when condition 2µ∥∇fi(wt)∥2B−1
t

s0 + fi(wt) ≥ 0 holds, then the solution is given by
β = θ

4µ

α = − θB−1
t ∇fi(wt)

2

θ = 4µ(fi(wt)−s0)

1+2µ∥∇fi(wt)∥2
B−1
t

.

(24)

which is equivalent to 
w − wt = − (fi(wt)−s0)

1
2µ

+∥∇fi(wt)∥2
B−1
t

B−1
t ∇fi(wt)

s− s0 = (fi(wt)−s0)

1+2µ∥∇fi(wt)∥2
B−1
t

.
(25)

If not, we have solution as following:{
β = −s0

fi(wt) + ⟨∇fi(wt), α⟩ = 0.
(26)

This problem can be solved similarly as proof of Lemma 1, and its solution is given byw − wt = − fi(wt)

∥∇fi(wt)∥2
B−1
t

B−1
t ∇fi(wt)

s− s0 = −s0.
(27)

(ii) If the constraints st+1 = 0 is active then our problem reduces to
min
w∈Rd

∥w − wt∥2Bt

fi(wt) + ⟨∇fi(wt), w − wt⟩ ≤ 0 (28)

which is a projection onto a halfspace, and its solution is given by

w − wt = −
fi(wt)

∥∇fi(wt)∥2B−1
t

B−1
t ∇fi(wt) (29)

To sum up all these above cases can be written as solution which is given by lemma2 (2).

9
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Lemma 5 Let δ > 0,c ∈ R and w,w0, a ∈ Rd. The closed-form solution to
w′, s′ = argminw∈Rd,s∈Rb∥w − w0∥2Bt

+ δ(s− s0)2

s.t.
aT (w − w0) + c ≤ s, (30)

is given by

w′ = w0 − δ
(c− s0)+

1 + δ∥a∥2
B−1

t

B−1
t a,

s′ = s0 +
(c− s0)+

1 + δ∥a∥2
B−1

t

. (31)

Proof Let α = w − w0, β = s− s0, then our question becomes
α, β = arg min

α∈Rd,β∈Rb
∥α∥2Bt

+ δβ2

s.t.
aTα− β + c− s0 ≤ 0. (32)

(1)If w = w0 and s = s0 satisfies in the linear inequality constraint, that is if c ≤ s0, in which case
the solution is simply w′ = w0 and s′ = s0.
(2) But if c ≥ s0, (w0, s0) is out of the feasible set, then we need to project (w0, s0) onto the
boundary of the halfspace. Let L = ∥α∥2Bt

+ δβ2 + λ(aTα− β + c− s0), take the derivative with
respect to α , β and λ , make them equal to zero, we get

∂L
∂α = 2Btα+ λα = 0
∂L
∂β = 2δβ − λ = 0
∂L
∂λ = aTα− β + c− s0 = 0.

(33)

To solve these problems we have:

λ =
2(c− s0)

1
δ + ∥a∥B−1

t

, α = −λ

2
B−1

t a, β =
λ

2δ
. (34)

By plugging in and enumerating all possible cases, we get the closed solution (31).

A.3. Proof of Lemma 3

Proof The slack variables in the objective function of (14) can be re-written as

µ(s− st)
2 + λs2 =

1

λ̂
(s− µλ̂st)

2 + constant w.r.t. s,

where λ̂ = 1
µ+λ . After dropping constants, solving (14) is equivalent to

wt+1, st+1 = argminw∈Rd,s∈R∥w − wt∥2Bt
+

1

λ̂
(s− µλ̂st)

2

fi(wt) + ⟨∇fi(wt), w − wt⟩ ≤ s. (35)

By Lemma (5) with a← ∇fi(wt), c← fi(wt), s0 ← µλ̂st and δ ← 1
λ̂

, we have the solution given
by Lemma (3).
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PSPS: PRECONDITIONED STOCHASTIC POLYAK STEP-SIZE METHOD FOR BADLY SCALED DATA

Appendix B. Additional Experiments

In all experiments the slack parameters λ = 0.01, µ = 1
2 for PSPSL1 and µ = 1 for PSPSL2. Batch

sizes of 64 and 1 were used with datasets mushrooms and colon-cancer respectively. Scaling vector
e = {exp(xi)}di=1 where xi is generated from a uniform distribution on the interval [−k, k].

(a) k = 1

(b) k = 2

Figure 2: Performance comparison of PSPSL1 and PSPSL2 to non-scaled versions of SPS, SGD
and Adam on badly scaled mushrooms datasets. All methods are trained with Logistic
Regression.
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PSPS: PRECONDITIONED STOCHASTIC POLYAK STEP-SIZE METHOD FOR BADLY SCALED DATA

(a) original

(b) k = 1

(c) k = 2

(d) k = 3

Figure 3: Performance comparison of PSPSL1 and PSPSL2 to non-scaled versions of SPS, SGD
and Adam on original badly scaled mushrooms datasets. All methods are trained with
NLLSQ.
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PSPS: PRECONDITIONED STOCHASTIC POLYAK STEP-SIZE METHOD FOR BADLY SCALED DATA

(a) k = 1

(b) k = 2

Figure 4: Performance comparison of PSPSL1 and PSPSL2 to non-scaled versions of SPS, SGD
and Adam on original badly scaled colon-cancer datasets. All methods are trained with
Logistic Regression.
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PSPS: PRECONDITIONED STOCHASTIC POLYAK STEP-SIZE METHOD FOR BADLY SCALED DATA

(a) original

(b) k = 1

(c) k = 2

(d) k = 3

Figure 5: Performance comparison of PSPSL1 and PSPSL2 to non-scaled versions of SPS, SGD
and Adam on original badly scaled colon-cancer datasets. All methods are trained with
NLLSQ.
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